L'histoire du four Micro-Ondes

1946, États-Unis. L’ingénieur Percy Spencer, soudain pris d’une petite faim, glisse la main dans la poche de sa blouse et attrape une barre de chocolat… Malheureusement pour lui, cette dernière est complètement fondue...

Peut-être n’y aurait-il pas prêté plus d’attention, si ce n’était pas déjà la troisième fois ! Il s’interroge : la chaleur de son corps serait-elle responsable ou autre chose fait-il fondre le chocolat ?

L’ingénieur travaille alors sur les radars et tout particulièrement sur l’un de ses composants, un tube à vide produisant des ondes, appelé "magnétron".


C’est d’ailleurs cet appareil qu’il soupçonne d’avoir fait fondre son chocolat. Il se demande si les micro-ondes produites par celui-ci pourraient cuire des aliments…

Pour en avoir le cœur net, il réalise une expérience pour le moins originale : il bricole le magnétron et place ensuite à proximité... des grains de maïs. Et là, surprise, les grains chauffent tellement qu’ils donnent du pop-corn !


S’en suit un ballet d’essai culinaire : œuf, sandwich, tout y passe. Spencer prend même l’habitude de réchauffer son déjeuner dans son micro-ondes.

Convaincu du potentiel de son invention, il dépose un brevet et parvient à persuader sa société de la commercialiser sous le nom de "Radar Range". Le micro-ondes ressemble alors à un gros frigo et coûte très cher.


Il faudra attendre plusieurs années pour que les scientifiques comprennent son fonctionnement. Ce sont en fait les micro-ondes qui, en agitant les molécules d'eau contenues dans les aliments, parviennent à les chauffer.
Aujourd’hui presque tous les foyers occidentaux possèdent un radar antiaérien dans leur cuisine !

Pour en savoir plus :

Sur Percy Spencer

Sur la découverte du micro-onde

Sur comment fonctionne un micro-ondes

Source de l'article : Clément Jailin Sciencetips

Facial appearance affects science communication

https://docs.google.com/document/d/1m--SqWFKJduXbzX7oc6yCUvDWO3PQQ6rhAh4ObdnwH0/pub

Facial appearance affects science communication

  1. Ana I. Gheorghiua,  2. Mitchell J. Callana, and  3. William J. Skylarkb,1

Author Affiliations

Significance

The dissemination of scientific findings to the wider public is increasingly important to public opinion and policy. We show that this process is influenced by the facial appearance of the scientist. We identify the traits that engender interest in a scientist’s work and the perception that they do high-quality work, and show that these face-based impressions influence both the selection and evaluation of science news. These findings inform theories of person perception and illuminate a potential source of bias in the public’s understanding of science.

Next Section

Abstract

First impressions based on facial appearance predict many important social outcomes. We investigated whether such impressions also influence the communication of scientific findings to lay audiences, a process that shapes public beliefs, opinion, and policy. First, we investigated the traits that engender interest in a scientist’s work, and those that create the impression of a “good scientist” who does high-quality research. Apparent competence and morality were positively related to both interest and quality judgments, whereas attractiveness boosted interest but decreased perceived quality. Next, we had members of the public choose real science news stories to read or watch and found that people were more likely to choose items that were paired with “interesting-looking” scientists, especially when selecting video-based communications. Finally, we had people read real science news items and found that the research was judged to be of higher quality when paired with researchers who look like “good scientists.” Our findings offer insights into the social psychology of science, and indicate a source of bias in the dissemination of scientific findings to broader society.

INTRODUCTION

Public discourse and policy are increasingly shaped by scientific research, and scientists are increasingly encouraged to communicate directly with the public (1, 2). Newspaper and television interviews, science festivals, dedicated websites, and online videos are just some of the channels by which researchers describe their work to nonexpert audiences (3). These communications shape people’s beliefs about the physical and social world, and correspondingly influence personal decision-making and government action (4, 5).

However, contrary to traditional conceptions of the scientific process as a dispassionate sifting of evidence (6), extraneous variables can influence whether a given piece of research is widely discussed and believed or ignored and discredited. People’s selection and evaluation of science communications are swayed by the use of imagery (7), clarity of expression (8), and inclusion of jargon (9). These stylistic features interact with the recipient’s preconceptions and social context to influence the spread and impact of a scientist’s work (10, 11).

We investigated whether science communication is also affected by the scientist’s facial appearance. People form an impression of an individual’s personality, character, and abilities within a few hundred milliseconds of viewing their face (12). These impressions predict important social outcomes in domains including law (13), finance (14), and politics (15). Different traits are important in different domains (16), but there is good agreement between individuals and cultures about the extent to which a face signals core social traits such as trustworthiness, competence, and sociability (17, 18). However, these inferences generally have poor validity, meaning that facial appearance is an important source of bias even when more diagnostic information about a person is available (19, 20).

Given the potency of face-based impressions and the susceptibility of science communication to extraneous presentational factors, we hypothesized that a scientist’s face will influence two key components of the science communication process: selection (which research the public chooses to find out about) and evaluation (the opinions they form about that research). There is a long tradition of research into scientist stereotypes (2123), including evidence that people have a sense of what a scientist “looks like” (24), but the facial features that shape the public’s selection and evaluation of science communications have not previously been examined.

We focused on three core sociocognitive traits: competence (encompassing, for example, intelligence and skill), sociability (e.g., likeability and friendliness), and morality (e.g., trustworthiness and honesty). These factors capture the basic dimensions on which people evaluate groups and individuals (2528), and all three are germane to science communication. Facial competence predicts positive outcomes in many domains (29), and, although some depictions of scientists emphasize elements of incompetence (e.g., absent-mindedness; ref. 21), intelligence and skill are central to both competence (27) and scientist stereotypes (22), suggesting a positive effect of apparent competence on successful science communication. Trust is important both to effective communication and to the scientific process (6, 30, 31), and trustworthy-looking scientists may enjoy greater research success (32). However, face-based inferences about morality have surprisingly weak effects in other domains where trust is important, such as politics (15, 33, 34), so their impact on science communication is an open question. Finally, although science is a social enterprise (6, 31), scientists are often perceived as solitary and socially awkward (22, 23). Thus, although apparent sociability may be desirable in a communicator/educator (35), it might also weaken the perception that a researcher is a “good scientist” and hence diminish the public’s regard for their work (cf. ref. 33). A similar logic applies to facial attractiveness, whose influence we also examined: Attractiveness is valued in communicators (35) but does not predict research success (32), and may even be detrimental to having one’s work taken seriously by the public (cf. ref. 34).

Facial competence, morality, sociability, and attractiveness are therefore plausible influences on both the selection and evaluation stages of science communication, but the existence, loci, direction, and magnitude of their effects are open questions that the current work seeks to address.

Previous SectionNext Section

Results

Studies 1 and 2: Which Facial Traits Are Important to Science Communication?

In study 1, we randomly sampled the faces of scientists from physics (N=108N=108) and genetics/human genetics (N=108N=108) departments of 200 US universities. One group of participants rated these faces on a variety of social traits (e.g., “How intelligent is this person?”) as well as attractiveness and perceived age. Two other groups of participants indicated how interested they would be in finding out more about each scientist’s research (“interest” judgments) or how much the person looked like someone who conducts accurate and important research (“good scientist” judgments). Study 2 was a replication of study 1, using larger samples of faces and participants and more social traits. The faces were a representative sample from the biological sciences (N=200N=200) and physics (N=200N=200) departments of UK universities.

Confirmatory Factor Analysis established that the trait ratings comprised three factors: competence (αStudy1=0.92αStudy1=0.92, αStudy2=0.91αStudy2=0.91), sociability (αStudy1=0.95αStudy1=0.95, αStudy2=0.95αStudy2=0.95), and morality (αStudy1=0.95αStudy1=0.95, αStudy2=0.92αStudy2=0.92) (SI Appendix). Interest judgments and good scientist judgments were reliable and correlated, but were distinct constructs (study 1: αInt=0.72αInt=0.72, αGood=0.89αGood=0.89, correlation between mean judgments for each face r=0.182r=0.182, P=0.008P=0.008; study 2: αInt=0.75αInt=0.75, αGood=0.89αGood=0.89, r=0.279r=0.279, P=0.001P=0.001).

Separate mixed-effects regression analyses predicted interest judgments and good scientist judgments from facial traits (competence, morality, sociability, and attractiveness), scientist demographics [gender, age, discipline, and ethnicity (white vs. nonwhite, ref. 36)], and participant-level variables (age, gender, and level of science engagement), with all predictors entered simultaneously. Science engagement was measured with a custom questionnaire and is a potentially important source of variation in people’s overall interest in scientists’ communications that might modulate the strength of superficial, appearance-based cues (9). We analyzed the two studies separately, and pooled the data to get an overall estimate of effect size. (None of the effects were modulated by study; see SI Appendix.)

Interest in a scientist’s work was more pronounced among participants with higher science engagement (Fig. 1, Left). More importantly, interest was related to the facial traits of the scientist: People were more interested in learning about the work of scientists who were physically attractive and who appeared competent and moral, with only a weak positive effect of apparent sociability. In addition, interest was somewhat stronger for older scientists and slightly lower for females than for males, with little difference between white and nonwhite scientists and no consistent effects of participant gender or age.

 

Fig. 1.

Regression coefficients for studies 1 and 2, and pooled across studies. All predictors were standardized. Error bars show 95% confidence intervals; coefficients with CIs that exclude zero are highlighted in black. P_Age, participant age; P_Female, participant gender; and P_Sci, participant science engagement.Download PPT

Judgments of whether a scientist does high-quality work were positively associated with his or her apparent competence and morality, but negatively related to both attractiveness and perceived sociability (Fig. 1, Right). In addition, older scientists and nonwhite scientists were judged more likely to do good-quality work, but there was little overall effect of the scientists’ gender or of participant-level predictors.

In sum, scientists who appear competent, moral, and attractive are more likely to garner interest in their work; those who appear competent and moral but who are relatively unattractive and apparently unsociable create a stronger impression of doing high-quality research. We found similar results in an additional study that used a standardized face database rather than scientists (see SI Appendix).

Studies 3 and 4: Interest in a Scientist’s Work.

We next investigated whether facial appearance affects people’s choices about which science to engage with, by pairing the titles of real science news stories with faces that had received low or high Interest judgments in studies 1 and 2. By counterbalancing the assignment of faces to articles, we tested whether facial appearance biases people’s selection of science news stories. Study 3 examined whether the effects of face-based impressions were moderated by the scientist’s gender, academic discipline, and communication format (text versus video); study 4 explored the distinct contributions of facial competence and attractiveness, and the moderating influence of participant demographics.

In study 3, members of the public were told that they would read an article or watch a video in which a scientist describes his or her work. On each trial, participants chose which one of four items they would like to read/watch. Two of the titles were paired with “uninteresting” faces, and two were paired with “interesting” scientists, selected from those with the lowest and highest interest judgments in study 1. The article titles were taken from real news items published on ScienceDaily.com and prerated to be of similar, moderate interest to the public (see SI Appendix). The page layout mimicked the selection of science news items or blogs on popular websites. All participants made four choices, one for each combination of the scientists’ gender and research discipline (biology vs. physics), on the understanding that they would subsequently watch/read their chosen items.

Choices were coded according to whether the participant selected an article paired with a “low” face (coded 0) or a “high” face (coded 1). A mixed-effects logistic regression predicted choices from format (text vs. video), discipline, scientist gender, and their interactions, as well as participant age, gender, and science confidence. (The complexity of the design meant we did not include interactions between experimental and participant-level variables for this study.) The choice proportions and regression coefficients are plotted in Fig. 2.

 

Fig. 2.

(Top) (Left) The choice data from study 3 and (Right) the interest ratings from study 4. (Bottom) The corresponding regression coefficients. All predictors were standardized (prior to computing interaction terms). Error bars show 95% confidence intervals; coefficients with CIs that exclude zero are highlighted in black. Fem, female scientist; Int, intercept; Phys, physics news item; Vid, video format. Download PPT

Participants were more likely to choose research that was paired with a photo of an interesting-looking scientist, as indicated by the significant intercept term. This bias was present for both male and female scientists, physics and biology news stories, and video and text formats (all Ps < 0.05). The effect was more pronounced for videos than written articles, and was stronger for biology than for physics, although the effect of discipline depended on the scientist’s gender (for males, BDisc=−0.338BDisc=−0.338, P<0.001P<0.001; for females, BDisc=0.014BDisc=0.014, P=0.893P=0.893). Finally, female participants were more swayed by the scientist’s appearance than were male participants, and the effect of facial appearance diminished with participant age.

Study 4 built on the finding that competence and attractiveness were two key predictors of interest judgments in studies 1 and 2 by varying the attractiveness and competence of the scientists in a 2 × 2 within-subject design. Participants were asked to imagine that they were browsing a website hosting videos of scientists describing their research. Each trial presented one putative video, comprising a biology article title taken from study 3 paired with a male scientist’s photo taken from those scoring in the bottom or top octile on competence and attractiveness in study 2. (The ecological stimulus sample meant that the resulting manipulation of attractiveness was weaker than that of competence; see SI Appendix.) Participants rated how likely they would be to watch the video, completing one trial per cell of the design. A mixed-effects regression predicted interest ratings from competence, attractiveness, and their interaction, along with participant age, gender, science engagement, and their interactions with the facial traits.

Interest judgments were higher for participants with high science engagement and for older participants (Fig. 2). More importantly, interest was positively related to the facial competence of the scientist. There was also some indication that participants were more likely to select articles that were paired with attractive faces, but the effect was small, most likely because the manipulation was weaker. None of the participant-level variables moderated the effects of facial traits.

Taken together, these studies show that facial appearance affects the public’s selection of science news stories.

Studies 5 and 6: Evaluation of a Scientist’s Work.

Finally, we tested the consequences of face-based impressions for the public’s appraisal of a scientist’s work. We paired articles from news websites with faces that did or did not look like good scientists. Study 5 examined the moderating effects of the scientist’s discipline and gender; study 6 dissected the contributions of apparent competence and physical attractiveness, and examined the moderating influence of participant demography.

In study 5, participants were told that they would read articles from a new magazine section comprising profiles of people discussing their interests and work. The articles were adapted from news websites (e.g., newser.com) so as to be of similar length and clarity and to be expressed in the first person, such that a scientist is describing his or her own work to a general audience. Participants read two articles, each presented with a photo of its putative author—one with a high good scientist rating in study 1 and one with a low rating. The scientists’ gender and discipline (biology vs. physics) were varied between subjects. After two filler articles that profiled athletes, participants rated the quality of the two pieces of research. A mixed-effects regression predicted quality judgments from face type, discipline, scientist gender, and their interactions, as well as participant age, gender, and science engagement.

Research that was paired with the photo of a good scientist was judged to be higher quality, and this effect was unaffected by the scientist’s gender and discipline (Fig. 3). In addition, quality judgments were higher for physics articles than for biology articles, and higher among participants who were more engaged with science.

 

Fig. 3.

(Top) The mean quality ratings from (Left) study 5 and (Right) study 6. (Bottom) The corresponding regression coefficients. All predictors were standardized (prior to computing interaction terms). Error bars show 95% Wald confidence intervals; coefficients with CIs that exclude zero are highlighted in black. HiFace, researcher looks like a good scientist. Download PPT

Study 6 used the same 2 × 2 factorial manipulation of competence and attractiveness as study 4. Participants read four physics news stories, each paired with a male face from one cell of the design. They were subsequently shown the face–article pairings one at a time and asked to imagine that they had been selected to judge how much each piece of research deserved to win a prize for excellence in science. The data were analyzed in a mixed-effects regression with the same predictors as study 4.

More-competent-looking scientists were judged more deserving of the prize (Fig. 3). There was only a very weak negative effect of attractiveness, and no competence × attractiveness interaction. (As in study 4, the weak effect of attractiveness may be due to the relative weakness of the manipulation due to stimulus constraints; see SI Appendix.) In addition, older participants and female participants judged the scientists’ work to be more prize-worthy than did younger/male participants, but participant variables did not modulate the effects of facial traits.

Previous SectionNext Section

Discussion

The traits that engender initial engagement with a scientist’s work are distinct from, and sometimes opposite to, those that encourage the belief that the scientist does high-quality research. People reported more interest in the research of scientists who appear competent, moral, and attractive; when judging whether a researcher does “good science,” people again preferred scientists who look competent and moral, but also favored less sociable and more physically unattractive individuals. Notably, these sociocognitive traits “trumped” the influence of age, gender, and ethnicity—variables that are the primary of focus of much work on stereotypes and bias (37, 38)—implying an underlying source of influence that has received little attention in public discourse or academic studies of scientist stereotypes.

Our results further demonstrate the centrality of apparent competence and morality to social outcomes (29, 39), and support the idea that sociability and morality are distinct components of social warmth (25, 40). The conflicting effects of attractiveness on interest and good scientist judgments indicate that, although the stereotypical scientist may be an impartial truth seeker with limited personal appeal (23, 31), people partly treat science communication as a form of entertainment, where emotional impact and aesthetic appeal are desirable qualities (41). Presumably, it is pleasant to look at attractive researchers even if they do not fit one’s conception of a top-notch scientist, a suggestion that is consistent with evidence that good-looking academics receive higher teacher evaluations but do not enjoy greater research success (32).

These face-based impressions affected both the selection and evaluation of science news: People preferentially chose communications that were paired with scientists who looked interesting, and judged real science news stories more favorably when they were paired with faces that looked like good scientists. These results held for male and female researchers, for biology and physics news stories, and for text- and video-based communications, a breadth that implies that real-world metrics of communication success (e.g., web page views or social media feedback) will be positively correlated with the apparent competence of practicing academics.

Although appearance can be an accurate signal of a person’s disposition or abilities (42), this is limited to specific circumstances and traits (19), and the same face can produce radically different impressions (43). Thus, the fact that the same piece of research is evaluated differently when arbitrarily paired with different faces means that facial cues are a potential source of bias in science communication. This bias was not always large, but it is practically significant given the current scale of web-based media production and dissemination, where the 60% preference for “interesting-looking” scientists found in the Video condition of study 3 would amount to tens or hundreds of thousands of extra views. Indeed, the effect was particularly strong for video communications, and the rising use of video media such as TED talks means that face-based judgments are likely to play an increasing role in shaping the public’s engagement with scientific research. Moreover, although people with greater science engagement reported more interest in scientists’ work, engagement did little to moderate the effects of facial appearance on the selection and evaluation of science communications, indicating a pervasive bias that may not readily be rectified by improving motivation or education.

Our results show that science is a social activity whose outcomes depend on facial appearance in ways that may bias public attitudes and government actions regarding key scientific issues such as climate change and biotechnology. Moreover, because effective communication is increasingly important to scientists’ career progression (44), face-based biases may influence not just which scientists’ work gains popularity or acceptance among the public but also which scientific research is actually conducted, and by whom.

Previous SectionNext Section

Materials and Methods

Ethical approval was granted by the University of Essex Faculty of Science Ethics Sub-committee. Participants gave informed consent and were given links to the original sources of the science news stories. The data are available via the University of Cambridge Data Repository. Studies 4 and 6 were preregistered on the Open Science Framework (osf.io/ev794; osf.io/fterb). Additional information about participants, stimuli, procedures, and results is provided in SI Appendix.

Participants.

Participants in study 1 who provided trait ratings for the scientist face set were members of the University of Essex (United Kingdom) participant panel and participated in the laboratory; all other participants were members of the US population recruited via an online platform (45). At the end of all studies, participants provided demographic information and completed a questionnaire to measure their engagement with science (e.g., “I am knowledgeable about science,”“I find scientific ideas fascinating”).

Design and Procedure.

Trial order, block order, stimulus locations, and assignment of participants to conditions were randomized. Assignments of news items to faces and conditions were counterbalanced. Unless otherwise noted, all studies presented stimuli sequentially.

Studies 1 and 2.

The study 1 faces were a random sample of profile pictures from the websites of the physics and genetics/human genetics departments of the top 200 ranked US universities (46), cropped and edited to have a gray background and uniform height (130 pixels). Study 2 used 400 faces randomly sampled from the biological sciences and physics departments of UK universities in proportion to the number of scientists from each institution submitted to the United Kingdom’s 2014 Research Excellent Framework, cropped and standardized to 150-pixel height and presented against their original background (47).

Participants made judgments on a nine-point scale (1 = “not at all,” 9 = “extremely”). In study 1, 54 participants each rated the faces on traits related to competence (competence, intelligence), sociability (likability, kindness), and morality (trustworthiness, honesty) (48), as well as judging the attractiveness of the faces and estimating the face’s age in years (values below 16 and above 100 were discarded). Each dimension was judged in a separate block. The face set was divided into two subsets (54 biologists and 54 physicists per subset); 27 participants judged one subset; 26 judged the other. Two separate groups of participants indicated for all 216 photos “How interested would you be in finding out more about this person’s research?” (N=27N=27) or “How likely is it that this person is a good scientist?” (N=27N=27), with the latter defined as “someone who conducts accurate scientific research which yields valid and important conclusions.”

In study 2, 762 participants rated all faces on 1 of 12 social traits related to competence (competent, intelligent, capable, effective), morality (trustworthy, honest, moral, fair), and sociability (likable, friendly, warm and sociable), or judged attractiveness; a further 68 judged age. Participants could skip a face if they recognized it. Two separate groups provided Interest judgments (N=103N=103) and good scientist judgments (N=103N=103); each participant judged one of six sets of 200 faces.

In both studies, two independent judges rated the ethnicity (white vs. nonwhite) of the photos, with a third judge resolving discrepancies.

Studies 3 and 4.

Study 3 (N=849N=849) used the titles of eight biology and eight physics news stories selected from a prerated pool. For each scientist gender, the four lowest- and four highest-scoring faces on the interest dimension were selected from the study 1 stimuli. To boost the plausibility of the cover story, participants in the video condition completed an audio check at the start of the session. Study 4 (N=408N=408) used the four biology titles from study 3 with the least-extreme interest preratings. On each trial, one of two faces instantiating the relevant attractiveness–competence combination was randomly presented. Ratings were on a seven-point scale.

Studies 5 and 6.

Study 5 (N=558N=558) used four biology and four physics news stories selected from a prerated set for being of similar, moderate quality, of high clarity, and very seldom recognized. The faces were those with the two lowest and two highest good scientist scores for each gender from study 1 (after excluding the lowest-scoring male because of conspicuous headwear). Study 6 (N=824N=824) used the four physics news stories from study 3 with the least-extreme quality preratings, and the face stimuli from study 4.

After reading all their articles, participants were shown the title and photo for each science article; they rated the rigor, importance, validity, and overall quality of the work on a seven-point scale and indicated whether they had seen the scientist (study 6) or read about the research (studies 5 and 6) before the experiment (recognized trials were excluded). The four judgments were averaged (αStudy5=0.882αStudy5=0.882; αStudy6=0.875αStudy6=0.875).

Data Analysis.

All analyses used mixed-effects regression (49) with maximal but uncorrelated random effects, i.e., by-participant random intercepts and random slopes for all effects that are nested within participants (studies 1 to 6) and by-face random intercepts and random slopes for participant-level predictors (studies 1 and 2). Categorical predictors were coded as: gender (male = 0, female = 1); ethnicity (white = 0, nonwhite = 1); discipline (biology = 0, physics = 1); format (text = 0, video = 1); and face type (low on dimension of interest = 0; high = 1). All predictors were standardized (before computing interaction terms). To test simple main effects in study 3, we refit the model using dummy coding of the relevant predictor.

Previous SectionNext Section

Acknowledgments

This work was supported by Economic and Social Research Council studentship ES/J500045/1.

Previous SectionNext Section

Footnotes

  • 1To whom correspondence should be addressed. Email: wjm22@cam.ac.uk.
  • Author contributions: A.I.G., M.J.C., and W.J.S. designed research; A.I.G. performed research; A.I.G. contributed new reagents/analytic tools; A.I.G. and W.J.S. analyzed data; and A.I.G., M.J.C., and W.J.S. wrote the paper.
  • The authors declare no conflict of interest.
  • This article is a PNAS Direct Submission. A.T. is a guest editor invited by the Editorial Board.
  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1620542114/-/DCSupplemental.

Freely available online through the PNAS open access option.

REFERENCES

 

Un bon chercheur est un chercheur moche

Un bon chercheur est un chercheur moche

(Facial appearance affects science communication)

Ah qu'il était bon le temps où, non soumis au diktat de la communication, les chercheurs ne faisaient que chercher. Qu'elle est loin l'époque où l'on pouvait rester dans son laboratoire sans avoir besoin de faire la danse des sept pompons pour attirer les médias, pour défendre son équipe dans l'âpre compétition scientifique internationale ou pour arracher un budget aux coffres-forts des Picsou de la recherche. Sans tomber dans les excès de la NASA qui a bien dû nous vendre une dizaine de fois la présence d'eau sur Mars comme étant « une percée majeure », les chercheurs sont invités à se jeter dans l'arène publique, à participer aux débats de société, à donner des conférences de vulgarisation, à faire des vidéos sur Youtube voire à se lancer dans la politique comme le mathématicien Cédric Villani, candidat aux prochaines législatives dans l'Essonne sous l'étiquette La République En Marche !

La promotion – si ce n'est la survie – de la science est à ce prix... Toutefois, mettre le pied dans le monde du paraître nécessite d'assimiler des codes nouveaux – et pas seulement vestimentaires – bien éloignés de ceux du labo et du peer review. Chez Guignol on ne peut se contenter de décortiquer les faits et les observations pour en faire jaillir le savoir sous les yeux d'un public ébahi. Chez Guignol existe une « variable » inhabituelle et encore bien plus subtile à dompter que le système d'optique adaptative du Very Large Telescope : vous. Vous, votre tête, votre voix, votre phrasé, votre charisme de moule, votre trac, votre pull jaune…

Comme la science ne déteste rien tant que ce dont elle ne contrôle pas tous les paramètres, une équipe britannique des universités d'Essex et de Cambridge a donc, dans les Proceedings de l'Académie des sciences américaine du 22 mai, publié une étude consacrée à l'influence du visage des chercheurs sur la communication. Partant du principe que le quidam se fait, en moins d'une seconde, à la simple vue d'une personne, une idée de son caractère et de son intelligence, ces psychologues ont recueilli des centaines de photographies de chercheurs en physique et en génétique pour les soumettre à des « cobayes ». Tous les clichés avaient subi un traitement graphique pour que les visages aient la même taille et apparaissent sur le même fond.

Plusieurs tests ont été menés, au cours desquels les participants devaient noter l'intelligence, la compétence, la gentillesse, l'honnêteté, l'âge, l'attractivité des personnes photographiées et juger leur capacité à rendre intéressante une information scientifique et à être de bons chercheurs. Et là, surprise : suivant le but recherché, le physique agréable se révèle un atout ou un handicap. S'il s'agit d'expliquer en trois phrases et demie, à la télévision, les principes de la physique quantique, il sera plus judicieux d'envoyer une beauté sur le plateau de Cyril Hanouna : le message passera mieux. Mais s'il faut simplement incarner le ou la scientifique de qualité, choisissez quelqu'un dont l'attractivité et la sociabilité apparente sont médiocres, voire douteuses, voire lamentables. Peut-être faut-il voir là l'influence des stéréotypes. Les grandes figures de la science, que ce soit Albert Einstein, Stephen Hawking, Charles Darwin ou Tryphon Tournesol ne sont pas des Miss Univers. A en croire cette étude, un bon chercheur est un chercheur moche. Encore faut-il que l'on accorde foi aux résultats de ce travail. Les auteurs ont en effet négligé de faire figurer un élément important dans leur étude : leur photo.

Source : Pierre Barthélémy, Improbablologie 266

 

 

Les incroyables propriétés de la langue de grenouille

Les incroyables propriétés de la langue de grenouille

VOUS avez sûrement déjà vu un documentaire animalier dans lequel une grenouille (ou un crapaud) projette sa langue hors de sa bouche pour attraper une mouche. Si quelque chose vous a épaté, c’est probablement la vitesse et la précision du « tir », mais vous ne vous  êtes pas demandé comment la grenouille faisait pour que sa proie reste collée à sa langue. Sans doute celle-ci est-elle très adhésive, vous êtes-vous dit en oubliant la question annexe : dans ce cas, comment le batracien décolle-t-il l’insecte pour l’avaler ?

Comme le montre une très jolie étude américaine publiée le 1er février dans le Journal of the Royal Society Interface (qui, comme son nom le suggère, traite de sujets à l’interface entre la biologie et la physique), pour réussir sa « pêche à la mouche », la langue de la grenouille doit être dotée de propriétés plutôt hors du commun. Car, ainsi que l’expliquent les auteurs, chercheurs à l’Institut de technologie de Géorgie, même s’il n’a l’air de rien, en réalité rien ne va de soi dans cet acte de prédation.

Pour attraper les insectes, on devine que la grenouille doit aller très vite. Après avoir filmé des batraciens avec une caméra à grande vitesse permettant un ultra-ralenti, les scientifiques se sont aperçus que l’attaque durait 7 centièmes de seconde, soit cinq fois moins de temps qu’il ne vous en faut pour cligner des yeux. Or, écrivent-ils, à cette vitesse-là, aucun produit du commerce n’a le temps d’adhérer à une surface, et encore moins si cette surface présente des textures différentes comme le corps d’un insecte. Si vous essayiez de reproduire l’attaque de la grenouille, vous auriez toute les chances d’envoyer valdinguer l’insecte au loin, comme une raquette fait rebondir une balle.

Ces chercheurs américains ont donc essayé de comprendre quels phénomènes physiques se cachaient derrière cette prouesse. En plus d’analyser des vidéos, ils ont aussi récupéré, auprès du Jardin botanique d’Atlanta, six grenouilles et deux crapauds – tous d’espèces différentes – pour mesurer toutes les caractéristiques physiques de leur langue et de la salive qui la recouvre. Le résultat de leurs travaux est assez sidérant. Si les batraciens parviennent à engluer si vite leurs proies, c’est le résultat de deux phénomènes extrêmes : la très grande mollesse de la langue, dix fois plus élastique que la langue humaine, et un comportement incroyable de la salive.

Une viscosité changeante

Commençons par la texture de la langue. Celle-ci est tellement molle qu’au contact de l’insecte, au lieu de le frapper, elle se déforme – un peu comme l’avant des voitures modernes lors des crash tests –, absorbe le choc et s’enroule autour de la proie. Ce faisant, elle augmente la surface de contact avec l’insecte. Rappelons que tout cela ne dure que quelques centièmes de seconde… Pendant ce temps, que fait la salive déposée à la surface de la langue ? Eh bien elle adopte un comportement des plus étranges, celui d’un fluide dit non-newtonien. Quésaco ? Contrairement à l’eau qui, calme ou agitée, garde une viscosité identique, un fluide non-newtonien voit sa viscosité varier en fonction des contraintes qui sont exercées sur lui. Vous avez peut-être tenté l’expérience de verser un peu d’eau dans de la maïzena. Le mélange obtenu a des propriétés étonnantes : liquide au repos, il se durcit si on appuie dessus, au point qu’on peut même marcher sans couler dans un bassin rempli d’une mixture de ce type.

La salive de grenouille est un liquide non-newtonien doté des propriétés inverses : très visqueuse au repos, elle devient beaucoup plus liquide lorsque des contraintes s’appliquent sur elle. C’est ce qui se produit au moment du choc avec l’insecte : en une fraction de seconde, la salive se fluidifie, ce qui lui permet de se couler dans tous les interstices existant à la surface de la proie. Mais dès que le premier contact est terminé, elle reprend, toujours en une fraction de seconde, sa viscosité initiale. Lorsque la langue se rétracte, l’insecte est complètement englué et même le très rapide mouvement de retour ne permet pas qu’il s’arrache de là. En fait, la salive se comporte exactement comme les peintures modernes, très liquides lorsque le rouleau les étale, mais bien adhésives au support ensuite : elles ne se mettent pas à pleuvoir du plafond ni à couler le long du mur.

On en revient maintenant à la question du début : une fois que la bestiole est dans sa bouche, comment la grenouille s’y prend-elle pour la décoller de sa langue ? Si vous avez suivi le mécanisme, vous aurez trouvé facilement la réponse : il lui suffit d’appliquer de nouveau une contrainte sur sa langue pour que la salive se fluidifie de nouveau. Le plus étonnant est la source de ce frottement : le batracien le produit… avec ses yeux ! Chez la grenouille, l’arrière des globes oculaires donne en effet directement dans la cavité orale. L’animal les rétracte dans sa bouche pour pouvoir exercer une pression sur la langue, décoller l’insecte et le pousser dans sa gorge afin de l’avaler, tout comme une crosse de hockey pousse le palet sur la glace, pour reprendre l’image qu’utilisent les chercheurs dans leur article. Ceux-ci concluent leur étude en expliquant que l’on pourrait copier la langue de la grenouille pour mettre au point des colles réversibles à prise ultra-rapide. Après les pattes de gecko, après le mucus de la patelle, après la bave de l’escargot, voici peut-être venu le temps de la langue de grenouille dans le monde des adhésifs bio-inspirés.

Pierre Barthélémy ( Twitter  Facebook)

Source : Les incroyables propriétés de la langue de grenouille, publié sur le monde, 05/02/2017

Testing the “Stick-on-the-wall Spaghetti rule”

Testing the “Stick-on-the-wall Spaghetti rule”

Testing the “Stick-on-the-wall Spaghetti rule”

by Simone Montangero and Francesca Vittone and Institute for Complex Quantum Systems, Ulm University Ulm, Germany

There is always a moment when Italians abroad come across a local who explains to them a simple way of knowing how to cook Spaghetti “al dente”: throw them to the wall, if they stick they are ready to be eaten. After the first shock, they typically realize that this rule is worldwide known, while it is completely unknown in Italy where pasta is simply tasted. Being scientists we aim to test this rule to be able to refuse or accept it on solid ground. Moreover, we use this occasion to approach another common problem of scientists, that is, to explain to their young children what their parents do at work: we enrolled a class of preschoolers and show them how to experimentally test a belief with scientific rigor. We hope also to contribute to reduce the frustration of other scientists when their kids ask them about their jobs: long explanations typically result in a frustrated kid going away mumbling something about firemen or bus drivers…

fig1a

Figure 1: Typical results of the experiment, with stuck spaghetti highlighted in green, failures in red.

Experiment. We test the Stick On the Wall Spaghetti (SOWS) rule with a box of standard Spaghetti “Barilla”, official cooking time 9 minutes as reported on the box. The Spaghetti are cooked for 3, 6, and 9 minutes, and then are thrown against three different kind of walls: a kitchen wall (KW), a window (F), and a whiteboard (T). We have a team of 13 throwers, preschool kids of ages between 5 and 7 years. Each thrower throws one spaghetti for each different cooking time and wall kind, for a total of 13x3x3=107 launches, which are subsequently recorded as successfully stuck or not. Figure 1, reports a typical experimental result together with typical experimental conditions. The collected raw data are reported in Figure 2, for different cooking times and wall types.

fig2

Figure 2: Histogram of the experiments results (0 means failure to, 1 success), for the three different wall types (from left to right: window, kitchen and whiteboard), different cooking times (3, 6, and 9 minutes: violet, blue and green).

The statistical analysis of the experimental data acquisition is presented in Figure 3 where we report the average probability to stick (ratio between the number of stuck spaghetti and the total number of thrown ones) as a function of the cooking time for the three different walls. As expected, in all scenarios the probability to stick (mostly) increases with time. We interpret this as a signal that no major failure occurred in our experimental test. More interesting, after 9 minutes the probability to stick is compatible to 100% within the statistical error in the three cases (in the whiteboard case it is almost exactly one) strongly supporting the SOWS rule. However, the probabilities to stick are of about 50% in all other scenarios (slightly above at six minutes, more spread at three minutes but in all cases with a big standard deviation of about 30%). This implies that a cooker with a simple test with one single spaghetti thrown to the wall cannot acquire any information: in case it sticks the cooker cannot distinguish between any of the cooking time.

fig3

Figure 3: Average probability to stick as a function of time for different wall types: Kitchen (blue), Window (green), Whiteboard (Yellow). Standard deviation is of the order of 0.5 for times 3 and 6 minutes, while it drops to about 0.3 in the first two cases and to 0 in the Whiteboard one.

Discussion. A special care has to be paid to the scenario with the whiteboard as it displays an unexpected non-monotonic result: the probability to stick decreases between 3 and 6 minutes. To investigate such behavior and be sure we are not introducing some unwanted bias in our investigation, we analyzed the average probability of success and standard deviation of each thrower, as reported in Figure 4. As it can be seen, these two quantities are homogenous among all throwers but one (our youngest brave thrower), who has almost 100% probability of success. Assuming that this is not a statistical fluctuation but a bias for which data shall be corrected for, almost cures the non-monotonic behavior of the whiteboard data. However, it does not change the overall conclusions of our work, and thus we consider this a strong signal that our data acquisition is bias free.

fig4a

Figure 4: Average probability (blue) standard deviation (green) for all launches of each thrower.

Conclusions. In conclusion, the SOWS rule shall be refused in any “reasonable” kitchen or restaurant unless a huge amount of spaghetti is wasted in statistical tests. It is indeed more efficient to rely on the cooking time reported on the box. An alternative possibility to avoid waste is that the spaghettis are eaten after being stuck on the wall or fallen onto the floor as we have experienced in our experiment! We stress that this is a clear example where the “common knowledge” shall be carefully used and thus we urge the reader never to believe simple truths even if widespread accepted. We think that our study demonstrated once more the importance of the scientific method, which can be used to improve all important steps of our life starting from a good spaghetti meal.

Acknowledgments. This work has been part of a program for preschooler kids to explain how their parents spend time at work (but not always throwing spaghetti!) and to introduce them to the scientific method. We thank the teachers and the throwers of the preschool class of the kindergarden for their dedication, passion and throwing precision.

Pourquoi les incompétents se croient si doués ? (effet Dunning-Kruger) 

Pourquoi les incompétents se croient si doués

Un jour de 1995, McArthur Wheeler dévalisa deux banques de Pittsburgh (Pennsylvanie) à visage découvert. Même pas peur. Le soir même, peu de temps après que les images prises par les caméras de surveillance eurent été diffusées au journal télévisé de 23 heures, l'homme fut assez logiquement reconnu, dénoncé, arrêté. Quand la police lui montra les enregistrements, Wheeler le voleur fut frappé de stupéfaction. « Pourtant, je portais du jus », marmonna-t-il. Apparemment, celui qui se croyait si malin s'était persuadé que le jus de citron, bien pratique pour fabriquer de l'encre invisible, allait aussi rendre son visage indétectable par la vidéosurveillance et s'en était barbouillé la trogne.

Si David Dunning et Justin Kruger, deux psychologues américains de l'université Cornell, ont évoqué la mésaventure de Mister Wheeler en préambule de l'étude qu'ils ont publiée en 1999 dans le Journal of Personality and Social Psychology, ce n'est pas parce qu'ils avaient l'intention d'y vérifier les qualités du jus de citron, mais parce qu'ils souhaitaient comprendre pourquoi les personnes incompétentes – comme l'était ce maladroit détrousseur de banques digne d'un roman de Donald Westlake – peuvent avoir l'impression que leurs mauvaises décisions sont excellentes. Pourquoi « l'ignorance engendre plus souvent la confiance que ne le fait la connaissance », pour reprendre un célèbre constat du grand observateur de ses congénères qu'était Charles Darwin.

Disons-le d'emblée, la réponse à cette question n'est pas à chercher du côté de l'intelligence – songez à votre supérieur hiérarchique et à certains chefs d’État, que vous considériez comme des non-crétins tant qu'ils n'avaient pas atteint leur seuil d'incompétence. David Dunning et Justin Kruger ont émis l'hypothèse que, chez les incompétents, existait un biais psychologique qui les poussait à surestimer leurs capacités et leurs performances. Pour mettre cette idée à l'épreuve, ils ont élaboré une batterie d'expériences destinées à tester des « cobayes » dans des domaines nécessitant un minimum de savoir et de finesse : l'humour (avec des blagues notées par des comédiens professionnels), le raisonnement logique et la grammaire.

A chaque fois, les participants devaient faire un exercice et auto-évaluer leur prestation. Quel que fût le domaine abordé, les résultats ont été d'une constance remarquable. Systématiquement, les sujets les moins aptes surestimaient de beaucoup leur capacité à réussir l'épreuve ainsi que le nombre de questions auxquelles ils avaient répondu juste. A l'inverse, les plus doués des participants avaient un peu tendance à se dévaluer. Plusieurs semaines après le test portant sur la grammaire, les auteurs de l'étude ont invité les meilleurs mais aussi les plus nuls des participants à une deuxième session au cours de laquelle ils avaient pour mission de corriger les copies de cinq autres personnes et... de se réévaluer après avoir vu leurs réponses. Il advint ce qui devait arriver : les « champions » s'aperçurent qu'ils étaient meilleurs qu'ils ne le croyaient tandis que les cancres furent incapables de reconnaître la compétence des autres et de se remettre en question. Tout allait bien pour eux. Contents, contents, contents...

Depuis cette étude, ce biais dans l'auto-évaluation des incompétents, cette « surconfiance » qu'ils ont en leur capacité, porte le nom d'effet Dunning-Kruger. Les deux chercheurs américains ont désormais, en la personne de leur nouveau président, un sujet idéal pour tester leur théorie.

Source : « Improbablologie » de Pierre Barthélémy dans le supplément Science & Médecine du Monde 

Comment mesurer l’amour 

L’homme a pris la mesure du monde, au sens propre comme au figuré. Il l’arpente autant qu’il le soupèse, il l’évalue, le mètre et le calcule. Il a créé des échelles pour presque tout : l’échelle de Beaufort pour la vitesse des vents, l’échelle de Saffir-Simpson pour l’intensité des cyclones, l’échelle de Turin pour la menace que font peser les astéroïdes sur la Terre, des échelles de température (Kelvin, Celsius, Farenheit, Réaumur, etc.), l’échelle de Kinsey pour l’orientation sexuelle,

l’échelle de Bristol pour la typologie des excréments humains (à déconseiller à l’heure des repas), etc. Et, il fallait bien que cela arrive, Homo sapiens a aussi inventé une échelle pour mesurer l’immesurable, classifier l’inclassifiable, rationaliser l’irrationnel de la passion amoureuse, voir de combien de centimètres s’enfonce la flèche de Cupidon.

 

Titanic

Image du film "Titanic", de James Cameron. © Paramount Pictures/20th Century Fox.

Pour ma part, j’en étais resté au « Je l’aime, un peu, beaucoup, passionnément, à la folie, pas du tout » des amours enfantines effeuilleuses de marguerites. Mais, cela n’était visiblement pas assez précis, pas assez "quantifiant" pour nos amis en blouse blanche. J’ai découvert l’échelle de l’amour passionnel il y a quelques années au détour d’une étude assez amusante publiée dans PLOS One : des chercheurs y établissaient que, chez des jeunes gens très amoureux, la douleur provoquée par une brûlure était fortement atténuée dès lors que leurs cobayes regardaient une photographie de l’être aimé, un phénomène mettant en jeu le système de récompense installé dans notre cerveau. En lisant cela, je me suis demandé comment on pouvait, objectivement, recruter des personnes très amoureuses. Je me suis donc intéressé à la partie méthodologique de cette étude et j’ai constaté que, pour être sélectionnés, les quinze sujets avaient dû obtenir un score élevé sur la Passionate Love Scale (PLS) qui fête ses trente ans cette année.

Cette échelle de la passion a sans doute déjà due être surexploitée par les magazines féminins tant elle ressemble aux fameux tests psycho « Êtes-vous vraiment amoureuse ? » qui vous font passer le temps dans la salle d’attente du dentiste. J’ai retrouvé l’article original racontant comment cette elle a été très sérieusement mise au point, testée et validée comme fiable. Publié en 1986 dans le Journal of Adolescence, cet article est l’œuvre d’une psychologue et d’une sociologue américaines, Elaine Hatfield et Susan Sprecher. Elles y expliquent comment elles ont intégré dans ce test des composants cognitifs, émotionnels et comportementaux. À partir de ces éléments, elles ont rédigé 165 items dont, au final, seulement 30 ont été retenus pour la PLS normale, et 15 pour la PLS abrégée.

Intéressons-nous à cette dernière. Vous voilà donc en face de 15 affirmations, allant de « Je me sentirais désespéré(e) si Trucmuche me quittait » à « Je sens que mon corps réagit quand Trucmuche me touche ». Il faut noter chacune de ces affirmations de 1 à 9, 1 signifiant « Pas vrai du tout » et 9 « Entièrement vrai ». Faites le total. Si vous avez obtenu entre 106 et 135 points, vous êtes dans la partie la plus extrême et la plus chaude de la passion : vous ne pouvez pas vous empêcher de penser à Trucmuche et, si on vous enfonce des aiguilles rouillées et chauffées à blanc sous les ongles, la simple vue d’une photo de Trucmuche vous ôte toute sensation de douleur... Entre 86 et 105 points, c’est encore le grand amour, avec tout de même moins d’intensité. Plus le score baisse, plus les bouffées passionnelles se font rares. Enfin, si vous avez totalisé moins de 45 points, Trucmuche ne vous attire pas plus qu’une méduse échouée sur une plage. Vous pouvez le (ou la) larguer et vous inscrire sur Meetic. C’est la science qui vous le dit.

 

Source : Comment mesurer l’amour | Passeur de sciences

The Value of Audio Devices in the Endoscopy Room (VADER) study: a randomised controlled trial | Medical Journal of Australia

Download PDF

DOI : 10.5694/mja15.01096

Abstract

Objective: To evaluate the effect of Star Wars music (SWM) compared with endoscopist-selected popular music (PM) on quality outcomes in colonoscopy.

Design and setting: A single-centre, prospective, randomised controlled trial conducted in an endoscopy suite within a quaternary-centre gastroenterology unit, Melbourne, Australia.

Main outcome measures: The primary outcome measures were procedure time, polyp detection rate (PDR) and adenoma detection rate (ADR). The secondary outcome measure was adenomas per colonoscopy (APC).

Results: 103 colonoscopies were analysed: 58 in the SWM group and 45 in the PM group. Bowel preparation was assessed as good or excellent in 57% of the SWM group compared with 69% of the PM group (P < 0.01). The PDR was significantly higher in the SWM group than in the PM group (60% v 35%; P = 0.006). Similarly, the ADR was significantly higher in the SWM group than in the PM group (48% v 27%; P = 0.01). The APC in the SWM group was 84% compared with 35% in the PM group (P = 0.01).

Conclusion: SWM compared with PM improves key quality outcomes in colonoscopy, despite poorer bowel preparation.

Music has been used in medical therapy and healing since Ancient Greek times.1 Its use in the operating theatre has been longstanding, with reports of its potential therapeutic effects dating back to the 1940s.2Music therapy before and during an operation has been shown to reduce anaesthetic requirement and patient anxiety,3 and improve overall satisfaction.4 There is also evidence that proceduralist-selected music improves surgical skill acquisition.5

In gastrointestinal endoscopy, music has shown benefits for patients;6-14 however, there are no data on the effects of music on improving the performance of endoscopists and on whether a specific style of music would lead to optimal performance. This is particularly relevant in an era where high volumes of endoscopic procedures are performed in an often stressful clinical environment, and where procedural outcomes, such as adenoma detection rate (ADR) in colonoscopy, are reported as validated benchmarks of quality endoscopy.

The appropriate style of music to use and avoid in the operating theatre has been previously proposed,15 but music from epic movies was absent from this list. The soundtracks from such movies often contain uplifting musical tracks associated with glory, success and large-scale victory. Given we are avid fans of the Star Wars movies (Lucasfilm Ltd), and with the imminent release of the latest instalment, Star Wars: The Force Awakens, we felt it would be important and timely to evaluate the effect of music from the Star Wars soundtrack in colonoscopy. Therefore, we hypothesised that Star Wars music (SWM) would be superior to endoscopist-selected popular music (PM) when measuring quality outcomes in colonoscopy.

Materials and methods

In a hospital far, far away (Melbourne, Australia), patients were recruited from endoscopy lists from a single quaternary-centre gastroenterology unit between June and August 2015. All human subjects undergoing colonoscopy for any indication were included in the study. Ewoks and Wookies were excluded from the study owing to their inability to provide informed consent, but fortunately none were identified on the colonoscopy lists. The Austin Health Human Research Ethics Committee approved the project. The Jedi Council could not be contacted despite numerous attempts — clouded their contact details were.

Bowel preparation was performed using three sachets of sodium picosulfate for healthy patients and a volume-reduced regimen for patients with substantial comorbidities. A split-dose bowel preparation was used for afternoon procedures. All colonoscopies were performed under anaesthetist-administered monitored sedation with intravenous propofol. An Olympus 190-Series colonoscope (Olympus Medical Systems) was used in all cases. ProVation MD (ProVation Medical) was used for procedure documentation and coding.

Randomisation was performed using a coin toss by the endoscopist before colonoscopy to determine which music would be played: heads for SWM; tails for endoscopist-selected PM. SWM included the soundtrack from Star Wars: Episode III Revenge of the Sith, of which “Battle of the Heroes” (composed by John Williams) was the most commonly played track. The music was played through a personal computer in the endoscopy suite at a volume of between about 40 and 70 decibels, depending on the tolerance of the other endoscopy staff, and began before commencement of the colonoscopy. Patients were blinded to the music type being used.

Five endoscopists participated in the study: one consultant with 10 years’ experience (Jedi Master) and four specialist registrars with 1–2 years’ experience (Padawans). An independent member of the endoscopy team kept timings of procedures, and endoscopists were blinded to these timings. Timing commenced when the scope entered the anus (outer rim) and continued until the scope was withdrawn from the colon. The Padawans were supervised by a Jedi Master endoscopist for each procedure and advised to use the Force, and not force, during the colonoscopy.

Patient demographics and the presence of diverticular disease were recorded. The quality of bowel preparation was assessed by the endoscopist using qualitative descriptors (“excellent”, “good”, “fair” or “poor”). Primary end points were the procedure time, polyp detection rate (PDR) and adenoma detection rate (ADR). The PDR was defined as the number of colonoscopies in which one or more polyps were removed, divided by the total number of colonoscopies performed. The ADR was defined as the number of colonoscopies in which one or more adenomas were removed, divided by the total number of colonoscopies. A secondary end point was the recently proposed quality measure, adenomas per colonoscopy (APC), defined as the total number of adenomas detected divided by the number of colonoscopies.16

Data were analysed using the statistical software GraphPad Prism, version 6 (GraphPad Software, Inc). Non-parametric data comparisons between the two groups used Mann–Whitney tests to determine differences in procedure time and PDR. P ≤ 0.05 was used as the statistical significance level.

Results

Box 1 details the patient characteristics and colonoscopy outcomes. One hundred and three colonoscopies were included in the analysis: 58 in the SWM group and 45 in the PM group. A similar number of colonoscopies were performed by the Jedi Master in both groups (P = 0.45). Mean ages were 64 and 66 years (P = 0.13); 62% and 51% of patients in the SWM and PM groups, respectively, were men (P = 0.055). The most common indications for colonoscopy were positive faecal occult blood test, anaemia for investigation, and a personal history of polyps. Colonoscopies for bowel cancer screening and in patients with a history of polyps were evenly distributed between the two groups (P = 0.18).

Bowel preparation was assessed as good or excellent in 57% of the SWM group compared with 69% in the PM group (P < 0.01). Caecal intubation rates were high in both groups (98% and 97%, SWM and PM groups, respectively). The procedure duration was similar in both groups, with total procedure times of 20 minutes and 22 minutes and withdrawal times of 14 minutes in both groups (P = 0.87) in the SWM and PM groups, respectively.

The PDR was significantly higher in the SWM group than in the PM group (60% v 35%; P = 0.006). Similarly, the ADR was significantly higher in the SWM group than the PM group (48% v 27%; P = 0.01). The APC in the SWM group was 84% compared with 35% in the PM group (P= 0.01).

Discussion

Colonoscopy is a key intervention to prevent bowel cancer.17 With an increasing uptake of bowel cancer screening, demand on colonoscopy services is high. Of note, individuals from the baby boomer generation, many of whom were fans of the original Star Wars trilogy, are approaching the appropriate age to undergo bowel cancer screening. It is therefore essential that strategies to enhance quality outcomes in colonoscopy are evaluated. Environmental considerations are important, and music has been shown to improve a proceduralist’s skills. Our prospective, single-centre randomised controlled trial study supports the positive effects of music in procedures, and demonstrated a higher PDR and ADR with SWM compared with PM during colonoscopy.

Higher PDRs and ADRs were achieved in the SWM group compared with the PM group, despite a similar procedure time and a lower rate of optimal bowel preparation. It would be expected that a poorer quality of bowel preparation would lead to a lower PDR and ADR and prolonged procedure duration. Poor preparation leads to missed lesions. Missed lesions lead to interval cancers. Interval cancers may have serious consequences for the affected patients. SWM may break this cycle. Our finding that the PDR and ADR were higher in the SWM group may relate to the heightened observation skills of the endoscopist in a conducive musical environment. Proceduralist-selected music, which was used in both groups of our study, has been found to induce neurohormonal and immune system changes that lead to improved procedural performance;18 however, this does not explain the differences observed between the groups. As Star Wars fans, we must suspect that the Force was also involved, enhancing our Force-sensitive abilities to detect polyps, despite an overall more hostile luminal environment. Akin to Luke Skywalker’s destruction of the Death Star in Star Wars: Episode IV A New Hope, despite being pursued by Darth Vader and TIE fighters, we trusted the Force to guide us through the murky colonic waters to locate and destroy polyps.

There are some limitations in our study. Despite being randomised, there was a non-significant trend towards a greater proportion of men in the SWM group compared with the PM group. Also, there were disproportionate numbers in the two groups. Both may be explained by flaws in randomisation; however, other key parameters known to influence PDR and ADR, such as being referred for colonoscopy after receiving a positive faecal occult blood test result from participation in the National Bowel Cancer Screening Program, were distributed evenly. Differences by sex between the groups were unlikely to account for the almost twofold increase in ADR in the SWM group compared with the PM group. Given that the Star Wars fan base is predominantly male and there were more males randomised to the SWM group, it is again plausible that the Force was involved — influence the coin toss it may have.

Without concealment allocation, it could be argued that the higher PDRs and ADRs in the SWM group were due to performance bias. However, the ADRs in the PM and SWM groups were at the expected level for the study population,19-22 so it is unlikely that deliberate underperformance in the PM group led to the observed difference in PDRs and ADRs between the groups. Additionally, the attainment of at least a 90% caecal intubation rate and an ADR of 20% was achieved in both groups and is in keeping with the current recommended guidelines for quality colonoscopy.23

It is unclear from this study if the improved endoscopic outcomes are specific to SWM or can be generalised to other epic movie soundtracks. A future study could, for example, assess the impact of music from the Lord of the Rings on endoscopic parameters. Of course, other non-Star Wars soundtracks would not be able to harness the power of the Force. If the Force is responsible for the superior endoscopic outcomes demonstrated in this, the addition of other Star Wars paraphernalia to the endoscopy suite may be of additive value. The wearing of Star Wars costumes may become a standard of practice in the future (Box 2).

In conclusion, SWM improves PDR and ADR in colonoscopy despite poorer quality bowel preparation when compared with PM. We recommend the widespread use of SWM in endoscopy rooms to improve quality outcomes. May the Force be with you.

 

Source : The Value of Audio Devices in the Endoscopy Room (VADER) study: a randomised controlled trial | Medical Journal of Australia

Ig Nobel : la cuvée 2015 est arrivée

Tous les mammifères mettent-ils le même temps à uriner ? Un poulet peut-il marcher comme un dinosaure ? C'est à ces questions que ce sont attaqués plusieurs chercheurs récompensés à Harvard lors des "Anti-Nobel" 2015.La cérémonie des IG Nobels en 2014 ©IGNobelsPARTAGER266129RÉAGIR0RECEVOIR LES ALERTESHUMOUR. Pour la 25e année, le comité des "Ig Nobel" a décerné ses prix à des équipes de chercheurs "qui font rire les gens, puis réfléchir", selon la formule récurrente de l'événement, lors d'une cérémonie iconoclaste à l'université de Harvard, le 17 septembre 2015, dans le nord-est des Etats-Unis. Comme chaque année, les sujets de recherche récompensés sont un régal : Le prix de physique est revenu à trois scientifiques de l'université américaine Georgia Tech ayant établi, dans un article publié en février 2014 dans PNAS, que tous les mammifères, quelle que soit leur taille, mettaient environ 21 secondes pour uriner, plus ou moins 13 secondes. L'équipe s'est vu remettre, comme chaque lauréat, un billet de dix mille milliards de dollars zimbabwéens, coupure dont la valeur est de quelques centimes d'euros dans un pays en proie à la plus forte inflation au monde. Le représentant du groupe, affublé d'une lunette de toilette en guise de collier, a reçu sa récompense, comme les autres équipes, des mains d'un des cinq vrais prix Nobel présents, notamment le lauréat en économie en 2007, l'Américain Eric Maskin.En mathématique, le comité a choisi deux Autrichiens de l'université de Vienne qui ont cherché à déterminer à l'aide de calculs statistiques s'il était possible que Moulay Ismaïl, sultan du Maroc, ait effectivement été le père de 888 enfants, nés entre 1697 et 1727, comme le soutient la légende. Au terme de leurs travaux, appuyés également sur des éléments historiques fournis, les chercheurs ont conclu qu'il était possible humainement et statistiquement que le sultan ait bien engendré cette descendance record, lui qui s'était entouré de 4 épouses et d'un harem d'environ 500 concubines. Leurs travaux ont été publiés en février 2014 dans la revue Plos One. Cette même revue a eu l'insigne honneur de voir publié dans ses pages un autre article lauréat dans la catégorie biologie. Un groupe de cinq scientifiques chiliens et américains, pour l'essentiel travaillant à l'université de Santiago, y explique, vidéo à l'appui, qu'un poulet équipé d'une queue artificielle adoptait une démarche similaire à celle d'un dinosaure.

Vidéo du poulet

Le prix de chimie a été remis à une équipe dont nous vous avions parlé en janvier 2015 : un procédé permettant de "décuire" un oeuf dur, en le couvrant au préalable d'urée, le principal déchet organique que nous éliminons dans l’urine. Dans la catégorie médecine, une équipe internationale a été récompensée sur ses nombreux travaux (pas moins de quatre études, ici, ici, ici, et là) sur les bénéfices physiologiques sur l'organisme du baiser passionné et des relations sexuelles. A également été récompensée une méthode de diagnostic originale pour diagnostiquer une appendicite : franchir un brise vitesse en voiture. Si le patient hurle, il y a des chances pour qu'il soit malade, d'après ces travaux publiés dans le British Medical Journal. En entomologie, c'est le courage qui a été récompensé. En effet, Michael L. Smith n'a pas hésité à se faire piquer par des abeilles à différents endroits du corps (lèvres, tétons, testicules et pénis compris) afin d'établir un index de douleur. D'après cette étude, la narine est l'endroit le plus douloureux (indice de douleur à 9) suivi de la lèvre supérieure (8,7) et du pénis (7,3).

Outre des chercheurs, le comité a couronné un acteur institutionnel, la police de Bangkok (Thaïlande). Après son arrivée au pouvoir en mai 2014, à la faveur d'un coup d'Etat, la junte militaire a promis de s'attaquer au fléau de la corruption, particulièrement répandu dans la police. A cette fin, a notamment été instaurée, fin 2014, une prime attribuée aux policiers refusant un pot-de-vin. La mesure a été récompensée par les organisateurs des Anti-Nobel.

Source : Ig Nobel : la cuvée 2015 est arrivée - 18 septembre 2015 - Sciencesetavenir.fr