Source : http://asciimath.org/
Syntax
Most AsciiMath symbols attempt to mimic in text what they look like rendered, like oo
for ∞∞. Many symbols can also be displayed using a TeX alternative, but a preceeding backslash is not required.
Type | TeX alt | See |
---|---|---|
+ | ++ | |
– | −– | |
* | cdot | ⋅⋅ |
** | ast | ∗∗ |
*** | star | ⋆⋆ |
// | // | |
\\ | backslash setminus |
\\ |
xx | times | ×× |
-: | div | ÷÷ |
|>< | ltimes | ⋉⋉ |
><| | rtimes | ⋊⋊ |
|><| | bowtie | ⋈⋈ |
@ | circ | ∘∘ |
o+ | oplus | ⊕⊕ |
ox | otimes | ⊗⊗ |
o. | odot | ⊙⊙ |
sum | ∑∑ | |
prod | ∏∏ | |
^^ | wedge | ∧∧ |
^^^ | bidwedge | ⋀⋀ |
vv | vee | ∨∨ |
vvv | bigvee | ⋁⋁ |
nn | cap | ∩∩ |
nnn | bigcap | ⋂⋂ |
uu | cup | ∪∪ |
uuu | bigcup | ⋃⋃ |
Type | TeX alt | See |
---|---|---|
2/3 | frac{2}{3} | 2323 |
2^3 | 2323 | |
sqrt x | √xx | |
root(3)(x) | 3√xx3 | |
int | ∫∫ | |
oint | ∮∮ | |
del | partial | ∂∂ |
grad | nabla | ∇∇ |
+- | pm | ±± |
O/ | emptyset | ∅∅ |
oo | infty | ∞∞ |
aleph | ℵℵ | |
:. | therefore | ∴∴ |
:’ | because | ∵∵ |
|…| | |ldots| | |…||…| |
|cdots| | |⋯||⋯| | |
vdots | ⋮⋮ | |
ddots | ⋱⋱ | |
|\ | | | || | | |
|quad| | | || | | |
/_ | angle | ∠∠ |
frown | ⌢⌢ | |
/_\ | triangle | △△ |
diamond | ⋄⋄ | |
square | □□ | |
|__ | lfloor | ⌊⌊ |
__| | rfloor | ⌋⌋ |
|~ | lceiling | ⌈⌈ |
~| | rceiling | ⌉⌉ |
CC | Cℂ | |
NN | Nℕ | |
Qℚ | ||
RR | Rℝ | |
ZZ | Zℤ | |
« hi » | text(hi) | hihi |
Type | TeX alt | See |
---|---|---|
= | == | |
!= | ne | ≠≠ |
< | lt | << |
> | gt | >> |
<= | le | ≤≤ |
>= | ge | ≥≥ |
-< | prec | ≺≺ |
-<= | preceq | ⪯⪯ |
>- | succ | ≻≻ |
>-= | succeq | ⪰⪰ |
in | ∈∈ | |
!in | notin | ∉∉ |
sub | subset | ⊂⊂ |
sup | supset | ⊃⊃ |
sube | subseteq | ⊆⊆ |
supe | supseteq | ⊇⊇ |
-= | equiv | ≡≡ |
~= | cong | ≅≅ |
~~ | approx | ≈≈ |
prop | propto | ∝∝ |
Type | TeX alt | See |
---|---|---|
and | andand | |
or | oror | |
not | neg | ¬¬ |
=> | implies | ⇒⇒ |
if | ifif | |
<=> | iff | ⇔⇔ |
AA | forall | ∀∀ |
EE | exists | ∃∃ |
_|_ | bot | ⊥⊥ |
TT | top | ⊤⊤ |
|– | vdash | ⊢⊢ |
|== | models | ⊨⊨ |
Type | TeX alt | See |
---|---|---|
( | (( | |
) | )) | |
[ | [[ | |
] | ]] | |
{ | {{ | |
} | }} | |
(: | langle | ⟨〈 |
🙂 | rangle | ⟩〉 |
<< | ⟨〈 | |
>> | ⟩〉 | |
{: x ) | x)x) | |
( x :} | (x(x | |
abs(x) | |x||x| | |
floor(x) | ⌊x⌋⌊x⌋ | |
ceil(x) | ⌈x⌉⌈x⌉ | |
norm(vecx) | ∥→x∥∥x→∥ |
Type | TeX alt | See |
---|---|---|
uarr | uparrow | ↑↑ |
darr | downarrow | ↓↓ |
rarr | rightarrow | →→ |
-> | to | →→ |
>-> | rightarrowtail | ↣↣ |
->> | twoheadrightarrow | ↠↠ |
>->> | twoheadrightarrowtail | ⤖⤖ |
|-> | mapsto | ↦↦ |
larr | leftarrow | ←← |
harr | leftrightarrow | ↔↔ |
rArr | Rightarrow | ⇒⇒ |
lArr | Leftarrow | ⇐⇐ |
hArr | Leftrightarrow | ⇔⇔ |
Type | TeX alt | See |
---|---|---|
hat x | ˆxx^ | |
bar x | overline x | ¯xx¯ |
ul x | underline x | x––x̲ |
vec x | →xx→ | |
dot x | .xx. | |
ddot x | ..xx.. | |
overset(x)(=) | overset(x)(=) | x==x |
underset(x)(=) | =x=x | |
ubrace(1+2) | underbrace(1+2) | 1+21+2⏟ |
obrace(1+2) | overbrace(1+2) | 1+21+2⏞ |
color(red)(x) | xx | |
cancel(x) | xx |
Type | See | Type | See |
---|---|---|---|
alpha | αα | ||
beta | ββ | ||
gamma | γγ | Gamma | ΓΓ |
delta | δδ | Delta | ΔΔ |
epsilon | εε | ||
varepsilon | ɛɛ | ||
zeta | ζζ | ||
eta | ηη | ||
theta | θθ | Theta | ΘΘ |
vartheta | ϑϑ | ||
iota | ιι | ||
kappa | κκ | ||
lambda | λλ | Lambda | ΛΛ |
mu | μμ | ||
nu | νν | ||
xi | ξξ | Xi | ΞΞ |
pi | ππ | Pi | ΠΠ |
rho | ρρ | ||
sigma | σσ | Sigma | ΣΣ |
tau | ττ | ||
upsilon | υυ | ||
phi | ϕϕ | Phi | ΦΦ |
varphi | φφ | ||
chi | χχ | ||
psi | ψψ | Psi | ΨΨ |
omega | ωω | Omega | ΩΩ |
Type | See |
---|---|
bb « AaBbCc » | AaBbCcAaBbCc |
bbb « AaBbCc » | AaBbCcAaBbCc |
cc « AaBbCc » | AaBbCcAaBbCc |
tt « AaBbCc » | AaBbCcAaBbCc |
fr « AaBbCc » | AaBbCcAaBbCc |
sf « AaBbCc » | AaBbCcAaBbCc |
Standard Functions
sin, cos, tan, sec, csc, cot, arcsin, arccos, arctan, sinh, cosh, tanh, sech, csch, coth, exp, log, ln, det, dim, mod, gcd, lcm, lub, glb, min, max, f, g.
Special Cases
Matrices: [[a,b],[c,d]]
yields to [abcd][abcd]
Column vectors: ((a),(b))
yields to (ab)(ab)
Matrices can be used for layout: {(2x,+,17y,=,23),(x,-,y,=,5):}
yields{2x+17y=23x−y=5{2x+17y=23x-y=5
Complex subscripts: lim_(N->oo) sum_(i=0)^N
yields to limN→∞N∑i=0limN→∞∑i=0N
Subscripts must come before superscripts: int_0^1 f(x)dx
yields to ∫10f(x)dx∫01f(x)dx
Derivatives: f'(x) = dy/dx
yields f‘(x)=dydxf′(x)=dydx
For variables other than x,y,z, or t you will need grouping symbols: (dq)/(dp)
for dqdpdqdp
Overbraces and underbraces: ubrace(1+2+3+4)_("4 terms")
yields 1+2+3+44 terms1+2+3+4⏟4 terms.
obrace(1+2+3+4)^("4 terms")
yields 4 terms1+2+3+41+2+3+4⏞4 terms.
Attention: Always try to surround the >
and <
characters with spaces so that the html parser does not confuse it with an opening or closing tag!
The Grammar
Here is a definition of the grammar used to parse AsciiMath expressions. In the Backus-Naur form given below, the letter on the left of the ::=
represents a category of symbols that could be one of the possible sequences of symbols listed on the right. The vertical bar |
separates the alternatives.
v ::= [A-Za-z] | greek letters | numbers | other constant symbols u ::= sqrt | text | bb | other unary symbols for font commands b ::= frac | root | stackrel | other binary symbols l ::= ( | [ | { | (: | {: | other left brackets r ::= ) | ] | } | :) | :} | other right brackets S ::= v | lEr | uS | bSS Simple expression I ::= S_S | S^S | S_S^S | S Intermediate expression E ::= IE | I/I Expression