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Background: Low grade inflammation is one of the major metabolic disorders in case of obesity due to
variable secretion of adipose derived cytokines called adipokines. Recently the nuclear protein HMGB1
was identified as an inflammatory alarmin in obesity associated diseases. However HMGB1 role in adi-
pose tissue inflammation is not yet studied.
Objectives: The aim of this study was to prove the expression of HMGB1 in human adipose tissue and to
assess the levels of expression between normo-weight and obese individuals. Furthermore we deter-
mined which type of cells within adipose tissue is involved in HMGB1 production under inflammatory
signal.
Methods: Western-blot was performed on protein lysates from human normo-weight and obese adipose
tissue to study the differential HMGB1 expression. Human normo-weight adipose tissue, adipose-derived
stromal cells (ASCs) and adipocytes were cultured and stimulated with LPS to induce inflammation.
HMGB1, IL-6 and MCP-1 secretion and gene expression were quantified by ELISA and Q-PCR respectively,
as well as cell death by LDH assay. HMGB1 translocation during inflammation was tracked down by
immunofluorescence in ASCs.
Results: HMGB1 was expressed 2-fold more in adipose tissue from obese compared to normo-weight
individuals. LPS led to an up-regulation in HMGB1 secretion and gene expression in ASCs, while no
change was noticed in adipocytes. Moreover, this HMGB1 release was not attributable to any cell death.
In LPS-stimulated ASCs, HMGB1 translocation from nucleus to cytoplasm was detectable at 12 h and the
nuclear HMGB1 was completely drained out after 24 h of treatment.
Conclusion: The expression level studies between adipose tissue from normo-weight and obese individ-
uals together with in vitro results strongly suggest that adipose tissue secretes HMGB1 in response to
inflammatory signals which characterized obesity.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Obesity has been well studied and everyone agrees on the fact
that excess fat mass is critical for health. All the metabolic disor-
ders encountered during obesity lead to deleterious metabolic
and inflammatory diseases such as cardio-vascular diseases, arthri-
tis, diabetes and even cancer [1]. Numerous studies have shown
that excess fat mass leads first to low grade inflammation which
is evidenced by high level of circulating pro-inflammatory
cytokines and chemokines such as IL-6, TNFa, MCP-1, IL-1b and
by a lower level of circulating anti-inflammatory cytokines like
adiponectin [2–4]. More particularly, it has been proved that
adipose tissue is largely involved in this phenomenon by secreting
huge amount of IL-6 [5,6]. This cytokines dysregulation is one of
the starting point for obesity-related diseases [7].

Recently, a new protein is found to be involved in many infec-
tious and non-infectious diseases: the high mobility group box 1
(HMGB1) protein [8–10]. In all cell types, the main and first role
of this non-histone DNA-binding protein is to stabilize the nucleo-
somes, to help DNA bending and then to take part in DNA replica-
tion, transcription and repair [11]. Nevertheless under signals like
stress, cell death, infection or inflammation, HMGB1 is found to
be released from cell to act as a damage associated molecular pat-
tern (DAMP) [12,13]. This phenomenon occurs in many tissues
and cell types from different species such as hepatocytes [14,15],
smooth muscle cells [16], testis [17] or periodontal ligament [18].
Once released, this protein triggers the secretion of many
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pro-inflammatory cytokines and is characterized as an ‘alarmin’.
Further, HMGB1 promotes the recruitment of inflammatory cells
to damaged tissues [19,20], as in the case for atherosclerotic pla-
ques [21,22].

In mouse model, Hmgb1�/� pups die within 24 h due to hypo-
glycemia and have no fat [23]. Moreover atherosclerotic ham-
sters fed with high fat diet exhibit higher level of circulating
HMGB1 [24]. Mouse 3T3 fibroblasts and macrophages have been
shown to express and release HMGB1 under signals such as oxi-
dative stress (UVB) and inflammation (LPS) [25–27], and they are
activated by HMGB1 [15,27]. As 3T3 fibroblasts are capable of
differentiating into adipocytes and as macrophages infiltrate adi-
pose tissue in case of obesity, these studies suggest a potential
link between HMGB1 and obesity, although this link is not yet
well understood. Moreover, a positive correlation has also been
done between HMGB1 gene expression in human adipose tissue
and one of the common polymorphism of the fat mass and obes-
ity-associated (FTO) gene strongly linked to obesity [28]. Based
on these data, we aimed to determine if HMGB1 is secreted by
adipose tissue under low grade inflammation and which cell
types within adipose tissue could be implicated in HMGB1
production.

The first aim of this work was to prove the expression of
HMGB1 protein in human adipose tissue and to compare the
expression level between normo-weight and obese individuals.
Then from primary culture of human adipose tissue, adipocytes
and adipose-derived stromal cells (ASCs) from normo-weight
individuals, we compared the expression and secretion level
of HMGB1 in normal and inflammatory conditions. Finally,
immunostaining experiments were conducted on ASCs to
study the cytoplasmic translocation of HMGB1 under
inflammation.
2. Materials and methods

2.1. Reagents

Lipopolysaccharides (LPS from E. coli 0111:B4 strain, batch
#LPE-32-02) and TRIreagent were purchased from Sigma, France.
Collagenase (NB4, 0.12 PZU/mg) was from SERVA, Germany. Steri-
flip 100 lm was purchased from Millipore, France. All reagents for
cell culture were purchased from PAN Biotech (France) except
insulin (Umuline Rapide, Lilly, France) and reagents for adipocyte
differentiation (Sigma, France). Ringer Lactate was obtained from
B. Braun, France.
2.2. Origin of human adipose tissue samples and harvesting protocol

Subcutaneous (abdominal, buttocks, hips and thighs) adipose
tissue samples were obtained from normal weight (BMI 6 25,
mean body mass index = 22.65 ± 1.42 kg/m2) and obese women
(BMI P 30, mean body mass index = 35.6 ± 3.2 kg/m2) undergoing
liposuction, performed under general anaesthesia for aesthetic rea-
sons (aged from 25 to 60 years, mean 39 years). Apart from oral
contraception, the subjects were not receiving any treatment with
prescribed medication at the time of liposuction. Fat tissue was
harvested mechanically with a vacuum pump after infiltration of
a tumescence solution (40 mL lidocaine 2% + adrenalin 1 mg/L for
1 L Ringer Lactate) for local anaesthesia. A total of 22 samples were
obtained and the study was approved by the Reunion Island ethics
committee for the protection of persons undergoing biomedical re-
search. Samples were handled within an hour after the end of the
surgery.
2.3. Supplemented media

For all experiments, medium 199 was supplemented with 2 g/L
glucose, 5 mg/mL amphotericin B, 0.2 mg/mL streptomycin and
200 U/mL penicillin. For adipose tissue and adipocytes, 1% fetal bo-
vine serum (FBS) was added with 8 lg/mL biotin, 4 lg/mL panto-
thenate and 66 nM insulin. For ASCs, 20% FBS was added on the
day of culture, then 10% the day after and for the rest of the culture
period (media was changed each 2 days).

2.4. Adipose tissue preparation and primary culture

After liposuction, adipose tissue was rinsed thrice with Ringer
Lactate. For primary culture, 200 lL of tissue was distributed in
24-well tissue culture plates with 300 lL of supplemented med-
ium. Tissue was then maintained at 37 �C in 5% CO2 for a period
of 24 h prior to the experiments.

2.5. Adipocytes isolation and primary culture

After washing as described above, tissue was digested for
30 min at 37 �C in Ringer Lactate containing 0.5 mg/mL collage-
nase. The floating cells (adipocytes) were rinsed in Ringer-Lactate
and plated (200 lL, �30,000 cells) in 24-well tissue culture plates
with 300 lL of supplemented medium. Cells were then maintained
at 37 �C in 5% CO2 for a period of 24 h prior to the experiments.

2.6. Stromal cells extraction and ASCs primary culture

Tissue samples obtained by liposuction were digested for 1 h at
37 �C in Ringer Lactate containing 1 mg/mL collagenase. Digested
tissue was centrifuged and the pellet was resuspended in Ringer
Lactate, washed and filtered through Steriflip 100 lm. The isolated
cells have already been analyzed by flow cytometry to assess the
phenotypic characteristics of adipose stromal cells [29]. Cell count-
ing and viability were assessed by Trypan blue dye exclusion.
Around 200,000 cells/well were plated in 24-well culture plates
with 500 lL of supplemented media. Cells were then maintained
at 37 �C in 5% CO2 for a period of 24 h prior to the experiments.
By convention, the adherent and proliferated stromal vascular cells
are called adipose-derived stromal cells (ASCs).

2.7. ASCs differentiation into adipocytes

The day after 80–90% confluence, a differentiation cocktail was
added to the supplemented media [30]: 3% SVF, 200 nM insulin,
1 lM dexamethasone, 0.1 mM IBMX, 5 lM rosiglitazone, 16 lg/
mL biotin and 7.4 lg/mL pantothenate. After 4 days, the differenti-
ated adipocytes were maintained with 3% SVF, 200 nM insulin,
16 lg/mL biotin, 7.4 lg/mL pantothenate and medium was chan-
ged for every 3 days.

2.8. Adipose tissue protein extraction and western blot

Adipose tissue was lysed with protein lysis buffer (50 mM
Tris–HCl, pH 7.6, 500 mM NaCl, 0.2 mM EDTA) using Dounce
homogenizer (10 strokes) under ice-cold condition. The lysates
were centrifuged at 15,000g for 30 min at 4 �C, the fat cake was re-
moved and the aqueous protein phase was transferred to a new
tube. Protein concentration was determined by Bradford method.

20 lg of proteins were separated by 12.5% SDS–PAGE and trans-
ferred to nitrocellulose membrane (Hybond C-EXTRA, Amersham
bioscience, France). Membranes were blocked with 5% non-fat
dried milk for 1 h at room temperature in Tris-buffered saline with
0.1% Tween-20 and then sequentially probed with mouse anti-hu-
man HMGB1 antibody (1:1000 dilution, clone 2F6, Sigma, France)
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or control mouse anti-human b-actin antibody (1:1000 dilution,
clone AC15, Sigma, France) and then with peroxidase labeled
anti-mouse IgG (1:2000 dilution, Vector Laboratories Inc., USA).

Band detection using homemade chemiluminescent substrate
(Luminol A8511 and p-Coumaric acid C9008, Sigma, France) was
developed on a high performance autoradiography film (Amer-
sham Hyperfilm™, France) and digitized using EPSON perfection
2480 photo. Band intensities were analyzed using image J software
(NIH, USA). HMGB1 signal intensity from samples was averaged,
normalized to signal from b-actin and used to calculate the relative
signal intensity and the statistical analysis.

2.9. HMGB1, IL-6 and MCP-1 ELISA

Following treatment, media samples were collected and as-
sayed for HMGB1 (IBL International, Germany), IL-6 and MCP-1
(eBioscience, France), according to the manufacturer’s instructions.
ELISA sensitivity: 0.2 ng/mL for HMGB1, 2 pg/mL for IL-6, 6 pg/mL
for MCP-1.

2.10. Cytotoxicity assay

The release of lactate dehydrogenase (LDH) induced by plasma
membrane disruption in culture medium was measured using LDH
cytotoxictiy assay kit from Science cell (Cliniscience, France)
according to manufacturer’s instructions. LDH release was mea-
sured through an enzymatic reaction and read at 490 nm. As a po-
sitive control for cell death, tissue and cells were treated with 1%
Triton X-100 (Sigma, France).

2.11. RNA extraction, reverse transcription and real-time quantitative
PCR

Following treatment, total RNA was isolated using TRIreagent
according to the manufacturer’s instructions. 2 lg of total RNA
was reverse-transcribed using random hexamers and Reverse
Transcriptase™ (Invitrogen, France). Quantitative PCR was per-
formed on 1 lL of cDNA using ABI PRISM 7500 thermal cycler (Ap-
plied Biosystems, France) with qPCR supermix for ABI PRISM
(Invitrogen, France). The 18S ribosomal RNA gene was used as a
reference. Quantification of target mRNA was calculated using
the comparative Ct method (DDCt) and was normalized to the ref-
erence gene expression. Analysis was performed on 6 samples per
condition. Primers sequences are listed below:
IL-6
 Forward: TCA CCT CTT CAG AAC GAA TTG ACA

Reverse: AGT GCC TCT TTG CTG CTT TCA C
MCP-1
 Forward: ATC ACC AGC AGC AAG TGT C

Reverse: AGG TGG TCC ATG GAA TCC TG
HMGB1
 Forward: ACC CAG ATG CTT CAG TCA AC

Reverse: GGC GAT ACT CAG AGC AGA AG
18S
 Forward: CGC CGC TAG AGG TGA AAT TCT

Reverse: CAT TCT TGG CAA ATG CTT TC
Fig. 1. HMGB1 protein expression in adipose tissue from lean and obese individuals
A. HMGB1 protein detected by western blot on adipose tissue lysates obtained from
5 lean individuals (BMI = 22.9 ± 1.6 kg/m2) and 5 obese individuals (BMI = 34.9
± 2.8 kg/m2). b-actin was used as control. Results are representative of 10 lean and
10 obese tissue samples. B. HMGB1 densitometry calculated on 10 lean individuals
(BMI = 23.1 ± 1.4 kg/m2) and 10 obese individuals (BMI = 35.6 ± 3.2 kg/m2). Data
were normalized to b-actin and presented as mean ± S.D (arbitrary units). P < 0.01
(��).
2.12. Immunofluorescence

ASCs were cultured in monolayer on glass coverslips. Following
treatment, the culture medium was removed completely and
washed thrice with ice-cold PBS to be fixed with ice-cold absolute
ethanol for 5 min. Cells were immediately stained for immunoflu-
orescence or air dried and stored at �20 �C until staining was per-
formed. Immunofluorescence staining was carried out according to
a standard protocol.
The fixed cells were incubated primarily with mouse anti-hu-
man HMGB1 antibody (1:1000 dilution, clone 2F6, Sigma, France)
overnight at 4 �C. After PBS-Tween (0.05%) washing, cells were
incubated with secondary antibody (1:2000 dilution, goat anti-
mouse Alexa flour 488 IgG, Molecular Probes, Invitrogen, France)
for 2 h in dark. Nuclei were stained with DAPI (D9542, Sigma,
France) at a final concentration of 0.1 ng/mL. Coverslips were
mounted in glass slides using Vectashield (Vector Labs, Clini-
science) and fluorescence was observed using a Nikon Eclips 80i
microscope (Nikon, France). Images were obtained using the Nikon
Digital camera system (Nikon, DXM1200C) and the imaging soft-
ware NIS-Element BR version 3.1 (Nikon).

2.13. Statistics

All values were measured as mean ± S.D. Statistical analysis was
performed using Graph pad PRISM 5 software (Windows). Differ-
ences between normal and obese adipose tissue were tested using
non-parametric T-test (Mann–Whitney test). Differences between
control and treated samples were tested for significance by one-
way ANOVA and Dunnett post-test. P < 0.05 (�); P < 0.01 (��);
P < 0.001 (���); P < 0.0001 (����).

3. Results

3.1. High HMGB1 expression in adipose tissue from obese individuals

To determine the basal expression of HMGB1 protein in adipose
tissue from normo-weight and obese individuals, western blot was
performed. Regardless of the BMI, a specific band corresponding to
HMGB1 protein was revealed from adipose tissue protein lysates of
all the samples tested with the expected molecular weight
(Fig. 1A). No oligomer or complex was revealed from the blot (data
not shown). This ensures that HMGB1 protein was expressed in
adipose tissue from both normal weight and obese persons. How-
ever, the HMGB1 bands from obese samples showed higher inten-
sity in comparison with normal samples. This was confirmed after
b-actin normalization of 20 samples analyzed: the average inten-
sity for obese samples was significantly 2-fold higher than the
average intensity for lean samples (Fig. 1B). Thus, HMGB1 protein
was expressed more in adipose tissue from obese in comparison
with normal weight individuals.
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3.2. HMGB1 secretion is up-regulated without gene up-regulation in
adipose tissue under inflammation

After LPS treatment, inflammation was confirmed by the huge
increase in IL-6 and MCP-1 secretion from adipose tissue: around
200 fold for IL-6 and 100 fold for MCP-1 since 12 h, until 400 and
200 fold respectively for 48 h (Fig. 2). LDH measurement from
media remained the same between control and LPS-treated tissue,
regardless of the time point (Fig. 2).

Regarding HMGB1 secretion, we observe that human adipose
tissue was able to release HMGB1 at a low basal level (less than
5 ng/mL, Fig. 2) and that there was no accumulation in culture
media. More interestingly, we show that under LPS treatment this
secretion was up-regulated from 24 h of incubation (3-fold in-
crease) and kept increasing until 48 h (5-fold more) reaching
17 ng/mL.

At gene expression level, although IL-6 and MCP-1 mRNA were
up-regulated, we cannot detect any significant change in HMGB1
mRNA level between control and LPS-treated adipose tissue (Fig. 3).
3.3. Adipocytes inflammation doesn’t regulate HMGB1 secretion and
gene expression

Despite the up-regulation of IL-6 and MCP-1 at both secretion
(Fig. 4) and mRNA (Fig. 5) level, there was no change in HMGB1
secretion and mRNA expression in adipocytes after LPS treatment,
regardless of the incubation time. Nevertheless, a basal level of re-
leased HMGB1 was detected (less than 5 ng/mL), without any accu-
mulation in the culture media. Moreover, adipocytes viability was
not affected by LPS treatment since there is no increase in LDH re-
lease (Fig. 4).
3.4. HMGB1 secretion and gene expression up-regulation in ASCs
under inflammation

LPS-treated ASCs showed inflammation, as there was a signifi-
cant up-regulation in IL-6 and MCP-1 secretion since 12–48 h
Fig. 2. HMGB1 secretion from adipose tissue in culture, normal versus inflammatory co
adipose tissue after 12 h, 24 h and 48 h incubation with or without 1 lg/mL LPS. Results
incubation with or without 1 lg/mL LPS. Results are expressed in arbitrary units normal
tissue samples (n = 6 for each condition, for each tissue sample). P < 0.001 (���).
(Fig. 6). HMGB1 was also released in higher levels after LPS treat-
ment (Fig. 6). This increase was significant since 12 h although
the level was low (less than 5 ng/mL) and at 48 h the increase
was about 10-fold to reach more than 10 ng/mL. Moreover, LPS
treatment did not induce any cell death in ASCs, as confirmed by
the LDH assay (Fig. 6).

At gene expression level, inflammation was characterized by
IL-6 and MCP-1 up-regulation (Fig. 7). Regarding HMGB1 mRNA,
a 20% increase was found at 12 h treatment and at 24 h expression
levels were doubled compared to control (Fig. 7). After 48 h treat-
ment, HMGB1 gene expression was no more up-regulated and
returned to normal.
3.5. HMGB1 secretion is not modulated by LPS in in vitro-differentiated
adipocytes

At day 16, adipose differentiation was confirmed by multilocu-
lar droplets accumulation inside cells, and identified as triglycer-
ides with Oil Red O staining (Fig. 8). These fully differentiated
and hypertrophied cells secreted more than 3-fold IL-6 after 24 h
LPS treatment, whereas no significant change was noticed in
HMGB1 secretion. No cell death was detected insofar as LDH dos-
age was not significantly higher after LPS treatment (and compared
to the first day of culture, data not shown).
3.6. HMGB1 translocation in ASCs under inflammation

In control cells, nuclei were stained in blue with DAPI, sur-
rounded and punctuated by green points corresponding to HMGB1
(Fig. 9). The nuclear DAPI staining completely matched with
HMGB1 staining, in accordance with the function of HMGB1 as a
nuclear protein. In control cells, there was no change in HMGB1
localization until 24 h of culture.

Under LPS treatment at 6 h, the HMGB1 intra-nuclear localiza-
tion was slightly modified to be higher in the nuclear crown. At
12 h treatment, HMGB1 translocation was effective and clearly vis-
ible, resulting in a cytoplasmic localization, although a slight signal
nditions. HMGB1, IL-6 and MCP-1 concentration measured by ELISA in media from
are expressed in ng/mL. LDH release from adipose tissue after 12 h, 24 h and 48 h

ized to 12 h control. The graphs show the mean ± S.D of the results from 6 different



Fig. 3. HMGB1 gene expression from adipose tissue in culture, normal versus inflammatory conditions. HMGB1 gene expression determined by Q-PCR after 12 h, 24 and 48 h
incubation with or without 1 lg/mL LPS. IL-6 and MCP-1 gene expression determined by Q-PCR on the 12 h samples. Results are expressed in arbitrary units reported to
respective time control. The graphs show the mean ± S.D of the results from 6 different tissue samples (n = 6 for each condition, for each tissue sample). P < 0.0001 (����).

Fig. 4. HMGB1 secretion from adipocytes in culture, normal versus inflammatory conditions. HMGB1, IL-6 and MCP-1 concentration measured by ELISA in media from
adipocytes after 12 h, 24 h and 48 h incubation with or without 1 lg/mL LPS. Results are expressed in ng/mL. LDH release from adipose tissue after 12 h, 24 h and 48 h
incubation with or without 1 lg/mL LPS. Results are expressed in arbitrary units normalized to 12 h control. The graphs show the mean ± S.D of the results from 6 different
tissue samples (n = 6 for each condition, for each tissue sample). P < 0.01 (��); P < 0.001 (���).
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was detected in the nucleus. After 24 h treatment, HMGB1 was
completely drained out from nucleus to the cytoplasm, resulting
in green signal only in the cytoplasmic compartment.
4. Discussion

The role of HMGB1 in the initiation of certain diseases has been
reported as well as its expression [31]. For instance, this is the case
for the non-alcoholic fatty liver disease [32] or for atherosclerosis
[16,24,33]. The common feature is low-grade inflammation, which
participates from the onset to the maintenance and aggravation of
these diseases. In the context of obesity, a recent work from Arrigo
et al., has identified blood HMGB1 as a new biomarker for meta-
bolic syndrome [34] in obese children, but nothing is known about
HMGB1 expression and its role in human adipose tissue. Here we
have investigated if HMGB1 could be possibly linked to adipose tis-
sue inflammation and obesity.

On all patients analyzed in this study, we observed that there
was a strong positive correlation between BMI and HMGB1 protein
expression within adipose tissue: the expression was higher in adi-
pose tissue from obese persons than normal weight individuals.
Our results further supports the study of Lappalainen et al., in
which they showed a positive correlation between HMGB1 gene
expression in adipose tissue and one of the common polymor-
phism of the FTO gene strongly linked to obesity [28]. Our study
further confirms that adipose tissue HMGB1 is dysregulated and
strongly expressed in case of obesity. This increase in HMGB1 pro-
tein level could probably partly due to leukocytes infiltration,
which happens in case of obesity [35,36], as these cells are known
to be a source of HMGB1 [25,37]. We wanted next to determine if
adipose cells themselves (stromal cells or adipocytes) have a role in



Fig. 5. HMGB1 gene expression from adipocytes in culture, normal versus inflammatory conditions. HMGB1 gene expression determined by Q-PCR after 12 h, 24 and 48 h
incubation with or without 1 lg/mL LPS. IL-6 and MCP-1 gene expression determined by Q-PCR on the 12 h samples. Results are expressed in arbitrary units reported to
respective time control. The graphs show the mean ± S.D of the results from 6 different tissue samples (n = 6 for each condition, for each tissue sample). P < 0.001 (���);
P < 0.0001 (����).

Fig. 6. HMGB1 secretion in ASCs, normal versus inflammatory conditions. HMGB1, IL-6 and MCP-1 concentration measured by ELISA in media from ASCs after 12 h, 24 h and
48 h incubation with or without 1 lg/mL LPS. Results are expressed in ng/mL. LDH release from adipose tissue after 12 h, 24 h and 48 h incubation with or without 1 lg/mL
LPS. Results are expressed in arbitrary units normalized to 12 h control. The graphs show the mean ± S.D of the results from 6 different tissue samples (n = 6 for each
condition, for each tissue sample). P < 0.05 (�); P < 0.001 (���).
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this expression. Then, for all in vitro experiments we have con-
ducted, we used samples from normo-weight individuals, which
contain no or really few infiltrated leukocytes (unpublished data).

It’s now well established that overweight and obesity exhibit a
chronic and low-grade inflammation [38,39]. Thus, in order to
know if the high level of HMGB1 expression in case of obesity is
linked to low grade inflammation, adipose tissue from normal
weight patients was cultured and treated with LPS to induce
inflammation. We proved for the first time that human adipose tis-
sue was able to release HMGB1 at a low basal level. More interest-
ingly, we showed that under inflammation, HMGB1 secretion was
upregulated. This increase in HMGB1 secretion following LPS treat-
ment has never been published concerning adipose tissue, and this
new result is totally in accordance with in vivo and in vitro studies
in other models [25,40].

Since HMGB1 has been considered for a long time only as a cell
death marker released passively by necrotic cells [41], we have also
performed cytotoxicity assay by measuring lactate dehydrogenase
(LDH) release. In our experiments, the level of LDH was low and the
same in all supernatants (control versus LPS), ruling out the possi-
bility that LPS-induced HMGB1 secretion was due to cell lysis. This
secretion is thus specifically attributable to inflammation and
could be associated to an active and regulated secretion, different
from the passive mechanism that occurs during cell death. Never-
theless, the HMGB1 basal detectable level noticed in control adi-
pose tissue could probably be attributable to basal cell death in
culture, at least partly.

Our data were totally new and led us to investigate which type
of cells within adipose tissue was responsible for this HMGB1 up-
regulation. Indeed, adipose tissue is composed by different kind of
cells: after collagenase digestion, we can separate the floating adi-
pocytes and the pelleted stromal vascular fraction. These two cell
populations were then plated separately and inflammation was in-
duced through LPS incubation.



Fig. 7. HMGB1 gene expression in ASCs, normal versus inflammatory conditions. HMGB1 gene expression determined by Q-PCR after 12 h, 24 and 48 h incubation with or
without 1 lg/mL LPS. IL-6 and MCP-1 gene expression determined by Q-PCR on the 12 h samples. Results are expressed in arbitrary units reported to respective time control.
The graphs show the mean ± S.D of the results from 6 different tissue samples (n = 6 for each condition, for each tissue sample). P < 0.01 (��); P < 0.001 (���); P < 0.0001 (����).
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Fig. 8. HMGB1 secretion from in vitro differentiated adipocytes. ASCs were induced to differentiate into adipocytes with appropriate media. To confirm differentiation, Oil Red
O staining was performed after 16 days (D16) and pictures were taken with a phase contrast light microscope and are representative of 2 different experiments (400�
magnification). At D16, the medium was changed and the fully differentiated cells were treated with or without LPS (1 lg/mL) for 24 h and HMGB1 secretion was quantified
by ELISA together with IL-6 and LDH release. Results are expressed in arbitrary units (normalized to control cells, 0.575 ng/mL for HMGB1 and 0.641 ng/mL for IL-6). The
graphs show the mean ± S.D of the results from 2 different tissue samples (n = 6 for each condition, for each tissue sample). P < 0.0001 (����).
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From our results, we can conclude that the general HMGB1 pro-
duction observed in adipose tissue comes exclusively from cells
from the stromal vascular fraction, insofar as ASCs were able to
respond to inflammation by up-regulating HMGB1 gene expression
and secretion in a time-dependant manner. Neither freshly cul-
tured adipocytes, nor in vitro-differentiated adipocytes showed a



Fig. 9. HMGB1 localization in ASCs, normal versus inflammatory conditions.
HMGB1 localization detected by immunofluorescence. After 6 h, 12 h and 24 h
incubation with or without 1 lg/mL LPS, ASCs were stained with anti-HMGB1
antibody (green) and DAPI (blue). 400� magnification. Photographs were taken
with an inverted fluorescent microscope and are representative of 3 independent
experiments on 3 different tissue samples.
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modification in their HMGB1 profile. This difference could explain
why in adipose tissue samples there was no increase in HMGB1
mRNA: the number of stromal cells within adipose tissue is less
compared to that of ASCs in primary culture and the resulting
mRNA expression reflected the adipocyte mRNA expression.

In case of obesity, the leukocytes infiltration could be partly in-
duced by the high level of MCP-1 released from adipose tissue dur-
ing inflammation but also due to HMGB1 release itself, which is
known to promote the recruitment of inflammatory cells [19,42].

In the present study, HMGB1 secretion was noticed until 48 h,
which further confirms its characterization as a late inflammatory
mediator, as it has been related in other models [25,43–45]. This
late secretion from adipose tissue could also occur secondarily
through TNFa effect, as it has been shown in epithelial cells [46]
or in hepatocyte cell line [47]. Indeed, after LPS treatment, TNFa
is secreted earlier from adipocytes (peak secretion at 6 h, in vitro
[48]) and could then stimulate stromal cells through a paracrine ef-
fect, to release HMGB1.

Furthermore, the immunofluorescence pictures on undifferenti-
ated ASCs showed a translocation of HMGB1 from nucleus to cyto-
plasm after LPS treatment. These results are in accordance with
literature (HepG2, mouse cardiac fibroblasts and RAW264.7
[25,47,49]). Other events as oxidative stress could lead to HMGB1
translocation (in human epithelial cells [50]). As inflammation and
oxidative stress are underlying phenomena in obesity, we can
hypothesize that HMGB1 translocation could occur in obesity-
linked status.

The translocation study further strengthens the hypothesis that
under inflammation signal HMGB1 secretion could mainly be
attributable to an active and regulated phenomenon, contrary to
the passive release happened during cell necrosis [51,52].
Moreover, no one has elucidated how this nuclear HMGB1 is se-
creted because HMGB1 does not have a leader sequence to follow
the classical pathway of endoplasmic reticulum and Golgi appara-
tus [52]. For instance, in LPS-activated monocytic cells, it has been
shown that once released from nucleus, HMGB1 is accumulated in
lysosomal vesicles [53,54], whereas it is spread in all cytoplasm in
mouse fibroblasts [53]. This lysosomes exocytosis is triggered by
lysophosphatidyl choline, which is generated later under inflam-
mation [54]. Nevertheless, it has been suggested that most of the
early release (until 12 h) is from preformed HMGB1 (probably in
nucleus) in activated mouse RAW264.7 cells [43]. From our results,
although no cytoplasmic vesicle was seen, we need additional
experiments to well understand this mechanism in this new
model.
5. Conclusions

In summary, we propose through our study that HMGB1 is
more expressed in adipose tissue from obese persons and that this
dysregulation is attributable to inflammation. We have also identi-
fied ASCs as the major source of HMGB1 in adipose tissue during
inflammation. In the context of using HMGB1 as a therapeutic tar-
get to prevent and treat obesity associated diseases [55], further
studies have to be investigated on human adipose cells to study
what are the signal transduction pathways and the paracrine or
autocrine effects due to this damage signal.
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