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Abstract
This paper deals with a multi-objective topology optimization problem in an asymmetrically heated channel, based on both
pressure drop minimization and heat transfer maximization. The problem is modeled by assuming steady-state laminar
natural convection flow. The incompressible Navier-Stokes equations coupled with the convection-diffusion equation, under
the Boussinesq approximation, are employed and are solved with the finite volume method. In this paper, we discuss some
limits of classical pressure drop cost function for buoyancy-driven flow and, we then propose two new expressions of
objective functions: the first one takes into account work of pressure forces and contributes to the loss of mechanical power
while the second one is related to thermal power and is linked to the maximization of heat exchanges. We use the adjoint
method to compute the gradient of the cost functions. The topology optimization problem is first solved for a Richardson
(Ri) number and Reynolds number (Re) set respectively to Ri ∈ {100, 200, 400} and Re = 400. All these configurations
are investigated next in order to demonstrate the efficiency of the new expressions of cost functions. We compare two types
of interpolation functions for both the design variable field and the effective diffusivity. Both interpolation techniques have
pros and cons and give slightly the same results. We notice that we obtain less isolated solid elements with the sigmoid-type
interpolation functions. Then, we choose to work with the sigmoid and solve the topology optimization problem in case of
pure natural convection, by setting Rayleigh number to {3 × 103, 4 × 104, 5 × 105}. In all considered cases, our algorithm
succeeds to enhance one of the phenomenon modeled by the proposed cost functions without deteriorating the other one. The
optimized design obtained suppresses any reversal flow at the exit of the channel. We also show that the thermal exchanges
are improved by computing the Nusselt numbers and bulk temperature. We conclude that the new expressions of objective
functions are well suited to deal with natural convection optimization problem in a vertical channel.

Keywords Natural convection · Vertical channel · Topology optimization · Objective functions ·
Adjoint sensitivity analysis · Sigmoid function

1 Introduction

Heat transfer between two vertical plates has applications
in many widely used engineering systems; for example,
cooling and heating industrial and electronic equipment
such as transistors, mainframe computers, plate heat
exchangers, and solar energy collectors. Heat transfer by
natural convection does not require additional mechanical
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devices, such as fans, and features robustness and simplicity.
So, the concept of natural convection, which is the transport
of heat by fluid motion driven by temperature-dependent
buoyancy forces, is attractive and the design of efficient heat
transfer systems constitute a multiple challenge.

Heat transfer and fluid flows driven by natural convection
in open channels have been extensively studied over the
last past decades, for vertical or inclined configurations,
with uniform heat fluxes or constant temperatures (Elenbaas
1942; Bodoia and Osterle 1962; Aung et al. 1972; Aung
1972; Desrayaud and Lauriat 2009; Sanvicente et al. 2013;
Tkachenko et al. 2016; Thebault et al. 2017). Some studies
also investigated the optimization of heat transfer in the
vertical channel. Bar-Cohen and Rohsenow (1984) perform
analytical optimization based on maximizing total heat
transfer per unit volume or unit primary area. To achieve this
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analytical optimization, they developed composite relations
for the variation of the heat transfer coefficient along the
plate surfaces. Morrison (1992) developed an approach for
determining the optimized fin configurations for a given
heat sink in natural convection. The proposed algorithm
allows the computer to look for the lowest temperature
performance of a user specified range of fin geometries.
Nasri et al. (2015) performed a numerical study in order to
analyze the effect of adding a chimney to a vertical open
channel. They determined the optimal geometric parameters
of the chimney and studied thermal and dynamic aspects
of the channel-chimney system by varying the width and
the height of the chimney while the aspect ratio of the
channel is kept fixed. Lim et al. (2018) applied a CFD-based
shape optimization in order to find the optimal channel
cross-sectional shape for minimizing local heat flux on the
cooling surface in fusion divertors. Maximum heat flux
on the cooling channel surface is defined as the objective
function in the optimization process. Finally, it is found
that the maximum heat flux and temperature in the cooling
channel can be significantly reduced compared with the
original circular channel shape by simple modification of
the ellipse-shaped cross section. Talukdar et al. (2019)
focused on the optimization of the thermal performance
for compressible laminar natural convection flow induced
under high-temperature difference in an open-ended vertical
channel by optimizing the channel inter-plate spacing
using numerical simulation. From the results obtained, a
correlation for optimum aspect ratio with Rayleigh number
which maximizes the heat transfer within the channel is
presented. To summarize, among these different studies,
there are few optimization of natural convection heat
transfer in open-ended channels investigations other than
parametric geometry with few design variables. However,
the optimization of these systems simultaneously demands
compactness, efficiency and control of heat and mass
transfers. As a result, in this paper, we deal with some
topology optimization problems for heat and mass transfers,
considering the physical case of an asymmetrically heated
vertical channel.

Topology optimization is a powerful and a popular
tool for designers and engineers to design process. Its
notion was initially introduced in structural mechanics by
Bendsøe and Kikuchi (1988). In order to increase the
structural stiffness under certain load, they targeted the
optimal material density distribution by identifying areas
in which material should be added. They expressed the
design problem in terms of real valued continuous function
per point, with values ranging from zero (indicating the
presence of void/absence of material) to unity (indicating
solid). The method has then been developed to numerous
problems in structural mechanics (Sigmund and Maute
2013; Eschenauer and Olhoff 2001; Liang 2007; Hassani

and Hinton 1998a, b, c; Wang et al. 2003). In fluid
mechanics, the same idea was adapted to Stokes flows by
Borrvall and Petersson (2003), by introducing a parameter
γ that depends on both the dynamic viscosity ν of the
fluid and the specific permeability κ of the porous material:
γ = ν/κ . This parameter γ is often referred to as an inverse
permeability function in the literature (Guest et al. 2004).
The friction force acting on the fluid by the material is
proportional to the velocity of the fluid as f = −γ �u where
�u is the velocity of the fluid. This term is added to the flow
equations. Domain areas corresponding to the fluid flow are
those where γ is closed to 0 while areas where γ is far from
0 define the part of the domain to be solidified. The optimal
solid walls to be designed correspond to the interfaces
between the two aforementioned areas. To summarize, the
goal of topology optimization is to compute the optimal γ

field in order to minimize some objective function under
consideration. Contrary to topology optimization applied
to design structure, research on topology optimization
applied to heat transfer and fluid dynamics is quite
recent. Dbouk (2017) presented a review about topology
optimization design methods that have been developed
for heat transfer systems, and for each of them, he
presented their advantages, limitations, and perspectives.
In topology optimization problems with large number of
design variables, gradient-based algorithms are frequently
used to compute accurate solutions efficiently (Othmer
2014; Marck et al. 2013; Alexandersen et al. 2014; Koga
et al. 2013; Bruns 2007; Yoon 2010). This algorithm starts
with a given geometry and iterates with information related
to the derivatives (sensitivity derivatives) of the objective
function with respect to the design variables. Among
the methods used to compute the sensitivity derivatives
required by gradient-based methods, the adjoint method
(Othmer 2014, 2008; Kontoleontos et al. 2013; Papoutsis-
Kiachagias and Giannakoglou 2016; Marck et al. 2013;
Bastide et al. 2018) has received a lot of attention since the
cost of computing the necessary derivatives is independent
from the number of design variables. Papoutsis-Kiachagias
and Giannakoglou (2016) present a review on continuous
adjoint method applied to topology optimization for
turbulent flows. Tong et al. (2018) have recently discussed
on the optimization of thermal conductivity distribution for
heat conduction enhancement. They considered different
cost functions and demonstrated that they should be
carefully chosen when heat conduction is involved. Othmer
(2008) derived the continuous adjoint formulations and
the boundary conditions on ducted flows for typical cost
functions. He proposed an objective function to reduce
pressure drops in open cavity. The originality of his method
is the versatility of the formulation where the adjoint
boundary conditions were expressed in a form that can be
adapted to any commonly used objective function. Then, for
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the automotive industry, Othmer et al. (2006) implemented
several objective functions like dissipated power, equal
mass flow through different outlets and flow uniformity. To
describe the transition and interface between fluid and solid
regions in the domain, the Solid Isotropic Material with
Penalization (SIMP) technique (Bendsøe and Kikuchi 1988;
Zhou and Rozvany 1991) is the mostly used in the literature
as the interpolation technique in topology optimization.
This approach represents the non-fluid regions as infinitely
stiff, a penalty to the flow, such that no interaction is
modeled. A new method of interpolation was presented
by Ramalingom et al. (2018) in order to improve the
fluid-solid interface during the optimization process. They
proposed two sigmoid functions to interpolate material
distribution and effective diffusivity. They showed that the
transition zones, i.e., zones where the velocity of fluid is
not small enough to be considered as solid, can be made
arbitrary small. The present paper thus also aims to present
an efficient gradient-based optimization method and gives
comparison between two types of interpolation functions,
namely SIMP and the sigmoids from Ramalingom et al.
(2018), for the material distribution and the effective
diffusivity.

Conjugate heat transfer was originally treated in Dede
(2009) and Yoon (2010). It is worth noting that this
field of research is very active today (Haertel et al.
2015; Yaji et al. 2016; Rokicki et al. 2016; Qian and
Dede 2016; Haertel and Nellis 2017; Goeke and Wünsch
2017). Most of these works focused on forced convection
although authors have previously presented a density-based
approach for natural convection problems (Alexandersen
et al. 2014; Alexandersen et al. 2015; Saglietti et al.
2017; Pietropaoli et al. 2019). Coffin and Maute (2016)
introduced a topology optimization method for 2D and
3D, steady-state, and transient heat transfer problems that
are dominated by natural convection in the fluid phase.
The geometry of the fluid-solid interface is described by
an explicit level-set method. Recently, Alexandersen et al.
(2016) used topology optimization to the design of three-
dimensional heat sinks cooled by natural convection. Heat
sinks in a closed cooled cavity are investigated for several
Grashof numbers. Interesting design features are observed
and trends are discussed. Joo et al. (2017) presented a
density-based method for a simplified convection model
for plane extruded structures. Alexandersen et al. (2018)
show that the optimized designs obtained thanks to topology
optimization for passive cooling of light-emitting diode
(LED) lamps by natural convection yield less package
temperature with less material compared with a lattice-fin
design. Saglietti et al. (2017) considered numerically the
natural convection-driven flow in a differentially heated
cavity using three different Prandtl numbers ranging from
0.7 to 7 at super-critical conditions. For specific cases,

the computation of optimal initial conditions leads to a
degenerate problem and the power iteration converges very
slowly and fails to extract all possible optimal initial
conditions. Lei et al. (2018) used a natural convection
experimental setup to study the performance of the
fabricated heat sinks, designed by a previously reported
topology optimization model for natural convection. The
results show that the tested topology optimization heat sinks
can always realize the best heat dissipation performance
compared with pin-fin heat sinks, when operating under the
conditions used for the optimization. Saglietti et al. (2018)
studied innovative designs of heat sinks generated through
numerical optimization. They investigated the impact of
boundary conditions, initial designs, and Rayleigh number.
They showed that as the Rayleigh number increases, the
topology of the heat exchanger is able to substantially
enhance the convection contribution to the heat transfer.

Although well-performing structures are obtained using
density-based approach, Alexandersen et al. (2016, 2018)
specified that the performance of structures obtained for
natural convection cannot be guaranteed in general due
to the simplified modeling. In Alexandersen et al. (2014),
they treated several difficulties that would be encountered
when dealing with natural convection problems as the oscil-
latory behavior of the solver, namely a damped Newton
method, used for the optimization computations. He also
reported intermediate relative densities that amplified the
natural convection effects leading to non-vanishing velocity
in some solid parts of the computational domain. Although
it is reported that this issue only arose when the objec-
tive function was directly dependent on the velocity field,
those zones are considered as solid by the optimization
algorithm while they should be treated as fluid. In addition
to this, topology optimization of natural convection prob-
lems is computationally expensive (Asmussen et al. 2018).
Bruns (2007) applied topology optimization to convection-
dominated heat transfer problems. He highlighted numerical
instabilities in convection-dominated diffusion problems
and justified them by the density-design-variable-based
topology optimization. Other numerical issues are encoun-
tered in topology optimization problems, as checkerboards
pattern and intermediate density regions. Authors usu-
ally adopted a continuation strategy where the parameter
involved in the SIMP interpolation of the effective diffusiv-
ity is gradually increased during the optimization process.
These values are chosen to aggressively penalize interme-
diate densities with respect to effective diffusivity and to
confine the maximum impermeability to the fully solid parts
of the domain. Similarly, authors used filtering techniques
(Lazarov and Sigmund 2011; Bruns 2005; Lee 2012; Marck
et al. 2013; Alexandersen et al. 2014) to overcome bad con-
nectivity between elements of solid domain. The filtering
is done by looking at the “neighborhood” of the individual
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element which is defined as the set of elements with cen-
ters within the filter radius. Bruns (2005) explained that the
main disadvantage of filtering the sensitivities is that the
approach is heuristic (Sigmund and Maute 2012) because
the sensitivities are not consistent with the primal analysis.
Therefore, the optimization problem is not well posed in
a rigorous sense. Alexandersen et al. (2013) explained that
some form of filtering can be beneficial for some topology
optimization problems. Minimizing the energy dissipated in
fluid flow problems are generally well posed and no filter-
ing is needed. On the contrary, alternating solid and fluid
elements can exist in structural and heat transfer problems
but the latter creates areas of solid elements not correctly
connected. Sigmund (2007) described various filters type
to fix this problem. More recently, Saglietti et al. (2018)
investigated a complete conjugated problem in which the
effect of the solid material on the surrounding flow through
the action of a Brinkman friction term in the Navier-Stokes
equations is described. They applied advanced filtering
techniques for enforcing a desired length scale to the solid
structure. In this paper, we are going to avoid the use of
filtering methods and we do not obtain isolated pieces of
material at the end of the optimization process. Finally, con-
jugate and heat transfer optimization problems are dealt
with quite many and various single or multi-objective func-
tions, such as thermal compliance (Yoon 2010; Alexander-
sen et al. 2014, 2015; Joo et al. 2017), mean temperature
(Dede 2009), total fluid power dissipated (Dede 2009; Qian
and Dede 2016), mass flow through a surface (Alexan-
dersen et al. 2014), heat flux through a surface (Saglietti
et al. 2018; Pietropaoli et al. 2019), kinetic energy and the
entransy (Saglietti et al. 2018), average temperature at the
heat flux region (Coffin and Maute 2016; Haertel et al.
2015; Zhao et al. 2018), mechanical energy (Pietropaoli
et al. 2019), dissipation energy combined with pressure drop
(Yaji et al. 2016; Qian and Dede 2016), and conductance
(Haertel and Nellis 2017).

This paper deals with the minimization of pressure
drop and the maximization of heat transfer in a natural
convection optimization problem. After analyzing some
limits we identified for the classical pressure drop
cost function when dealing with flows dominated by
natural convection forces, we investigate new expressions
of objective functions defined according to a systemic
approach to an asymmetrically heated vertical channel.
The geometry considered here is the model proposed by
Desrayaud et al. (2013) and corresponds to a boundary
layer flow with a reversal flow at the exit (Ramalingom
et al. 2017). Several configuration cases are considered
in order to evaluate the new objective functions. We also
compare two types of interpolation functions (sigmoid-
and Ramp-type) to interpolate material distribution and
effective diffusivity. We then solve the optimization

problem in mixed convection, for various Richardson
numbers Ri = {100, 200, 400} and then, we deal with the
optimization problem in case of pure natural convection, for
various Rayleigh numbers Rab = {3×105, 4×105, 5×105}.
Our optimization algorithm succeeds especially to avoid the
existence of a reversal flow. We show that our optimized
designs increase thermal exchanges by computing the
Nusselt numbers. We finally end this paper by drawing some
conclusions.

2 Governing equations

The flows considered in this paper are assumed to be in a
steady-state laminar regime, newtonian and incompressible.
Figure 1 shows the configuration of the computational
domain Ω . Physical properties of the fluid are the
kinematic viscosity ν and the thermal conductivity λf .
First, parameters governing the flow for natural convection
dominant is the Reynolds number defined as

Re = Ub

ν
,

with b being the width of the channel and U the reference
velocity based on the average velocity at the channel

Fig. 1 Geometry of the problem
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entrance. In case of pure natural convection, the reference
velocity is defined as

UCN = k Ra1/2

b
,

with k the thermal diffusivities of the fluid. The Prandtl
number is the ratio between the momentum and thermal
diffusivities of the fluid and is defined as

Pr = ν

k
.

In this paper, we consider only fluids with small Prandtl
hence satisfying Pr < 1. The Grashof number represents the
ratio between buoyancy and viscous force and is defined as

Grb = gβ�T b3

ν2
,

where �T = −φ/λf and φ is the thermal flux on 
1. The
modified Rayleigh number is associated with buoyancy-
driven flow, also known as natural convection. It is defined
as

Rab = GrbPr.

In thermal convection problems, the Richardson number
represents the importance of natural convection relative to
the forced convection. The latter is given by

Ri = Grb

Re2
.

Note that values greater than unity means that the flow is
dominated by natural convection. Under these assumptions
and thanks to a method given in Borrvall and Petersson
(2003), the porosity field is introduced in the steady-state
Navier-Stokes equation as a source term hτ (γ )u which
yields a Brinkman-like model with a convection term
(Ramalingom et al. 2018). Therefore, the dimensionless
form of the Navier-Stokes and energy equations are written
as follows:

∇ · u = 0 in Ω,

(u · ∇)u = −∇p + A�u − hτ (γ )u + Bθ
−→
ey in Ω,

∇ · (uθ) = ∇ · (Ckτ (γ )∇θ) in Ω,

(1)

where the constants A, B, C are defined according to the
case considered and read

– for dominant natural convection
{A, B, C} = {Re−1, Ri, Re−1Pr−1},

– for pure natural convection {A, B, C} =
{Pr Rab

−1/2, Pr, Rab
−1/2}.

In (1), (u, p, θ ) correspond respectively to the dimen-
sionless velocity, pressure and temperature and are usually
referred to as the primal variable in the current setting.
Parameter γ is the effective inverse permeability that is

going to be determined thanks to the optimization algo-
rithm. For the natural-dominated convection problem, one
has the following boundary conditions:

u = 0, ∇p = 0, ∂nθ = −1 on 
1,

u = 0, ∇p = 0, ∂nθ = 0 on 
2,

u = uiey, ∇p = 0, θ = 0 on 
i,

∂nu = 0, p = 0, ∂nθ = 0 on 
o,

(2)

where ∂n is the normal derivative defined as ∂n = n · ∇, 
1,

2, 
i , and 
o are respectively the hot plate, the adiabatic
plates, the inlet and the outlet of the channel. For the natural
convection case, the boundary conditions reads as follow:

u = 0, ∇p = 0, ∂nθ = −1 on 
1,

u = 0, ∇p = 0, ∂nθ = 0 on 
2,

∂nu = 0, ∇p = 0, θ = 0 on 
i,

∂nu = 0, p = 0, ∂nθ = 0 on 
o, (if u · n > 0)

∂nu = 0, p = −1/2 u2, ∂nθ = 0 on 
o, (if u · n < 0).

(3)

According to the results presented by recent studies
(Desrayaud et al. 2013; Brangeon et al. 2015; Ramalingom
et al. 2017), pressure boundary conditions at the top and
bottom sections based on Local Bernoulli relation are
chosen in the current numerical study.

3 Topology optimization formulation

The main goal of this paper is to deal with a multi-objective
optimization problem in the asymmetrically heated channel.
In the literature, cost functions are often expressions of the
work of forces or powers that one either wish to minimize
or wish to maximize. In the present study, we consider both
pressure drop minimization described by a first objective
function J1 and heat transfer maximization described by a
second objective function J2. The optimization problem can
then be stated as:

min J (u, p, θ) = c1 J1(u, p, θ) + c2 J2(u, p, θ),

where (u, p, θ) satisfy (1), (2),
(4)

and the cost function J is the combination of the two
objectives functions, c1 and c2 are weighting coefficients.
It is easy to observe that, for c1 � c2, the multi-objective
function amounts to a minimum power dissipation problem,
while for c1 � c2, a maximum heat dissipation problem is
defined.
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3.1 Multi-objective optimization

In multi-objective optimization, one of the challenges is
to benefit from both objective functions. As introduced
in previous subsection, the objective function based on
maximization of thermal exchanges can involve the increase
of pressure drop and conversely for the objective function
relative to the dissipation of power. Before combining
linearly the two functions, they must then be rescaled
to have the same order of magnitude. This can be done
by using an Aggregate Objective Function (AOF), also
known as the weighted-sum approach, which is based on a
linear combination of both objective functions (Athan and
Papalambros 1996; Messac et al. 2000). The latter reads:

f̂ = f − fmin

fmax − fmin
(5)

where f is either J1 or J2. As explained by (Marck
et al. 2013), the other four parameters are determined by
solving both optimization problems independently (4) for
min J1 and max J2. Consequently, both rescaled objective
functions are ranged between 0 and 1. Such a rescaling
allows to consider the following linear combination:

Ĵ = ω Ĵ1 − (1 − ω)Ĵ2 (6)

where ω ∈ [0, 1] is the weight balancing the influence
of each objective function. Note that this combination
involves the opposite of J2 since one aims at minimizing
the combinatory function Ĵ . Thereafter, Ĵ1 and Ĵ2 are used
only during the optimization process.

3.2 Limits of classical pressure drop cost function
for buoyancy-driven flow

In this section, we discuss some limits we identified of
the classical pressure drop cost function when dealing with
flows dominated by natural convection forces. The latter is
widely used in the literature (Borrvall and Petersson 2003;
Marck et al. 2013; Othmer 2008; Lv and Liu 2018; Koga
et al. 2013; Qian and Dede 2016; Ramalingom et al. 2018)
and reads

f1(u, p) =
∫




−n · u
(

p + 1

2
|u|2

)
dS. (7)

Also, as pointed out by Lv and Liu (2018), it is equivalent
to minimize the power dissipated by the fluid when the
fluid passes the boundary with constant velocity. It is worth
noting that all the previously mentioned studies using cost
function (7) does not consider buoyancy-driven flows. We
are now going to show that f1 is no longer the power

dissipated by the fluid in the current setting. Starting with a
Green formula, we obtain

f1(u, p) = −
∫




(
p + 1

2
|�u|2

)
�u · �n dS

= −
∫

Ω

div

((
p + 1

2
|�u|2

)
�u
)

dΩ

= −
∫

Ω

div (�u)

(
p + 1

2
|�u|2

)
dΩ

−
∫

Ω

�u · ∇
(

p + 1

2
|�u|2

)
dΩ

= −
∫

Ω

�u · (∇p + (�u · ∇)�u) dΩ,

where we used that �u · {(�u · ∇)�u} = �u ·( 1
2∇|�u|2). Using then

(1) and the boundary conditions (2), we infer

f1(u, p) = −
∫

Ω

�u ·
(

Re−1��u + Riθ �ey − hτ (γ )�u
)

dΩ

=
∫

Ω

Re−1|∇ �u|2 + hτ (γ )|�u|2 dΩ

−
∫




Re−1∂�n�u · �u d
 − Ri
∫

Ω

(�u · �ey)θ dΩ

=
∫

Ω

Re−1|∇ �u|2 + hτ (γ )|�u|2 − Ri(�u · �ey)θ dΩ

−Re−1
∫


i

(∂�n�u · ey)ui dS.

From the previous computations, one can see that f1 indeed
represent either the pressure loss inside the channel or the
dissipated power but only if the velocity of the fluid is
constant across the inlet (hence ∂�n�u · ey = 0) and if Ri = 0.
It is worth mentioning that the cost function f1 can still
be used to reduce the total pressure losses in the channel
for fairly small Richardson number (see, e.g., Ramalingom
et al. 2018 where one has Ri = 2.8). Nevertheless, since
in this paper we are going to work with large Ri, that is,
Ri ≥ 100, we introduce in the next section a new expression
for the dissipated power.

3.3 Definition of the cost functions with systemic
approach

In our study, we propose to evaluate mechanical and thermal
power via two new expressions of both cost functions.
We emphasize that proposing another expression of the
mechanical power is motivated by the results of Section 3.2
which show analytically that the usual expression of the
power dissipated by the fluid (see (7)) actually depends on
the Richardson number and does not suit when this number
is relatively large. The definition of our new cost function is
based on a systemic approach and have the major advantage
that they can be used with mean values at input and at output
of a given physical model. As a result, as our numerical
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results show, they do not seem to suffer from intrinsic
limitations coming from the modeling considered.

As we will show below, these functions actually give
an optimized design without using any filtering techniques.
Moreover, we do not observe isolated pieces of material at
the end of the optimization process.

As illustrated in Fig. 2, for a system with an inlet,
an outlet, an average velocity (Ui, Uo) and an average
temperature (θi, θo), the thermal power is defined as the
product of the mass flow, the volume heat capacity, and the
difference of temperature between the entrance and the exit
of the system. Likewise, mechanical power is defined as the
product of mass flow rate and the difference of total pressure
(pt ) between the entrance and the exit of the system. In that
way, we chose to minimize the work of pressure forces to
minimize the power dissipated in the channel as it is usually
done in systemic approach. Hence, the first cost function
can be written as:

J1(u, p) = − 1

|
i |
∫


i

pt dS

∫

i

u · n dS

− 1

|
o|
∫


o

pt dS

∫

o

u · n dS,

(8)

where pt = p + 1/2 |u|2 is the total pressure, 
i and 
o are
respectively the entrance (inlet) and the exit (outlet) of the
channel and |S| denotes the length of S ⊂ 
.

The second cost function concerns thermal exchange
maximization and is given by:

J2(u, θ) = 1

|
i |
∫


i

θ dS

∫

i

u · n dS

+ 1

|
o|
∫


o

θ dS

∫

o

u · n dS.
(9)

We can observe that this systemic approach for defining
the cost functions enables to dissociate total pressure or
temperature from the mass flow rate, since velocity profile
is imposed at the entrance.

Remark 1 Another classical cost function used for instance
in Marck et al. (2013) and Kontoleontos et al. (2013) is
related to the thermal power thanks to the next expression:

f2(u, θ) =
∫




n · u θ dS. (10)

Fig. 2 Systemic approach

Note that maximize f2 is equivalent to maximize the
bulk temperature. Also, maximizing (9) is equivalent to
maximize the mean temperature at apertures as opposed to
(10).

4 Topology optimizationmethods

Applying topology optimization to this problem aims to
minimize an objective function J by finding an optimal
distribution of solid and fluid element in the computational
domain. The goal of topology optimization is to end up
with binary designs, i.e., avoid that the design variables take
other value than those representing the fluid or the solid.
This is usually carried out by penalizing the intermediate
densities with respect to the material parameters, such as
inverse permeability and effective diffusivity. A standard
approach is to use interpolation functions. We are also going
to use gradient-based algorithm that relies on the continuous
adjoint method.

4.1 Interpolation functions

The additional term hτ (γ ) in (1) physically corresponds to
the ratio of a kinematic viscosity and a permeability. As
proposed by Guest et al. (2004), Sigmund (2007), and Zhao
et al. (2018), a projection approach is employed to relate
the element-based design variables to the physical densities
firstly and to the thermal diffusivity, secondly. We defined
two smooth regularization of Heaviside functions for these
interpolations. The interpolation function for the thermal
diffusivity of each element is kτ (γ ), both functions were
defined in Ramalingom et al. (2018) where it is shown
that the intermediate zones can be as small as desired.
Regions with very high permeability can be considered as
solid regions, and those with low permeability regions are
interpreted as pure fluid.

Inverse permeability can be interpolated with the
following formula

hτ (γ ) = γmax

(
1

1 + e−τ(γ−γ0)
− 1

1 + eτγ0

)
(11)

where γ0 is the abscissa slope of the sigmoid function,
τ is the slope of the sigmoid function, and γmax is the
maximum value that the design parameter γ can take. In
(Ramalingom et al. 2018), it is shown that the parameter
γ0 is linked to the quantity of material added in the
domain Ω . These parameters are going to be given in the
next section. The difference in the adimensional thermal
diffusivities of the fluid and solid regions considered
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through the interpolation of effective diffusivity kτ as
follows:

kτ (γ ) = 1

kf

[
kf + (ks − kf )

hτ (γ )

γmax

]
, (12)

where ks and kf are respectively the thermal diffusivity of
solid and fluid domains.

In this paper, we also studied the impact of a Ramp-
type interpolation function on solutions of the optimization
problem. The latter has been introduced in Borrvall and
Petersson (2003) and can be defined as follows:

σ(γ ) = σmax + (σmin − σmax) (1 − γ )
1 + q

1 − γ + q
, (13)

where σ ∈ {h, k} is either the inverse permeability or the
thermal diffusivity, q → 0, γ ∈ [0; γmax], hmin = γmin,
hmax = γmax, kmin = kf , kmax = ks .

4.2 Adjoint problem

The Lagrange multiplier method (Everett 1963) is used to
get an optimization problem without constraints and can
be used to get the sensitivity of the cost function J . The
Lagrangian is defined as

L(u, p, θ,u∗, p∗, θ∗, γ ) = J (u, p, θ)

+
∫

Ω

R(u, p, θ) · (u∗, p∗, θ∗)dΩ,
(14)

where (u∗, p∗, θ∗) are the so-called adjoint variables and
R(u, p, θ) = 0 corresponds to the governing (1). In order
to compute the adjoint problem for general cost functions,
we write the cost functional as follow

J (u, p, θ) =
∫

Ω

JΩ(u, p, θ)dΩ +
∫




J
(u, p, θ)d
.

The critical points of L with respect to the adjoint variables
give the constraint of the optimization problem (4) while
the critical point with respect to the primal variable yield
the so-called adjoint problem. The latter can be derived as
in Othmer (2008) (see also Ramalingom et al. 2018) and is
given by

∇p∗ − hτ (γ )u∗ + θ ∇θ∗ + A �u∗ + ∇u∗ u

−(u∗ · ∇)u = ∂JΩ

∂ �u in Ω,

∇ · u∗ = ∂JΩ

∂p
in Ω, (15)

B u∗ · −→
ey + u · ∇θ∗ + ∇ · (C kτ (γ )∇θ∗)

= ∂JΩ

∂θ
in Ω,

together with the boundary conditions for the natural-
dominated convection problem

u∗ = 0,
∂J


∂θ
= Re−1 Pr−1 kτ (α)∇θ∗ · n,

∂np
∗ = 0 on 
1 ∪ 
2,

u∗
t = 0, θ∗ = 0,

∂J


∂p
= −u∗

n, ∂np
∗ = 0 on 
i,

u∗
t = 0 on 
o,
∂J


∂θ
= −θ∗ un − Re−1 Pr−1 kτ (γ )∂nθ

∗ on 
o,

∂J


∂u
· n = −p∗ − θ∗ θ − Re−1 ∂nu∗ · n

−u∗
n un − u · u∗ on 
o,

(16)

where un = u · n is the normal component of the velocity
and ut = u · �t is its tangential part.

In the sequel, we are going to minimize some rescaled
cost function (6). We give below the expressions of the
derivatives of the cost functions used in the numerical
simulations done in the paper, namely the systemic cost
functions

Ĵ = ωĴ1 − (1 − ω)Ĵ2

where Ĵ is defined with (5) and J1 and J2 are given
respectively by (8) and (9). Note that, one has

JΩ = 0.

In addition, the derivatives of J
 with respect to the primal
variables (u, p, θ) are

∂J 


∂p

∣∣∣∣

i

= −c1
1

|
i |
∫


i

u · n dS

∂J


∂θ

∣∣∣∣

o

= c2
1

|
o|
∫


o

u · n dS

∂J


∂u

∣∣∣∣

o

= −c1
1

|
o|n
∫


o

pt dS − c1 u ·
∫


o

u · n dS

+ c2
1

|
o|n
∫


o

θ dS,

(17)

where

c1 = ω

J1,max − J1,min
, c2 = −(1 − ω)

J2,max − J2,min
.

For the systemic cost functions considered in this paper,
the adjoint problem is thus given by (15–17) with JΩ = 0.

4.3 Implementation

Topology optimization problem is solved by iterative
calculations as carried out, for instance, by Ramalingom
et al. (2018). The main steps of the algorithm consist
to compute sensitivities by adjoint method and evaluate
the optimality condition. If a stopping criterion is met,
the computations are terminated. For our simulations,
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we used the algorithm depicted in (Ramalingom et al.
2018, Page 5, Figure 2) where the stopping criterion is
used with ε = 10−7. The forward problem (1) and the
adjoint problem (15) are implemented using OpenFOAM
(Weller et al. 1998). A pressure-based, segregated, steady
solver (buoyant-Boussinesq, SimpleFoam) was used with
SIMPLE algorithm for pressure-velocity coupling. For all
results performed in this paper, we monitored the number
of iterations of linear system solver. The generalized
Geometric-Algebraic Multi-Grid (GAMG) solver with a
cell-centered colocalized finite volume approach is used.
Then, the design variables are evaluated by using the
conjugated-gradient descent direction method associated to
Polack-Ribiere method

βPR
k+1 = ∇J T

k+1 (∇Jk+1 − ∇Jk)

∇J T
k ∇Jk

.

The gradient of the cost function with respect to the design
parameter is given by the critical point of the Lagrangian
with respect to the design parameter γ and reads as follows:

∂J
∂γ

(γ ) = −∂hτ

∂γ
u · u∗−C

∂kτ

∂γ
∇θ · ∇θ∗ in Ω,

∂J
∂γ

(γ ) = −C
∂kτ

∂γ
θ∗with ∇nθ = −1 on 
1.

(18)

5 Investigated configurations

We present in this section the several cases that are
numerically tackled in the paper. We highlight that we are
interested in simultaneously minimizing mechanical power
and maximizing thermal power in a setting where both of
these quantities have the same impact on the optimized
vertical channel. As a result, we set

ω = 0.5

in all our numerical simulations

Remark 2 We needed to compute the rescaled systemic cost
functions Ĵ1 and Ĵ2 in order to minimize Ĵ = ωĴ1 − (1 −
ω)Ĵ2. As a result, even if these results are not presented
here since they are not in the scope of the paper, we actually
also solved optimization problem (4) for ω = 0 and ω = 1
hence we minimized the pressure losses and maximized the
thermal exchange in the channel.

In Section 6.1, we solve the heat and mass transfer
natural convection problem in the asymmetrically heated
channel with γ = 0 in Ω , in order to save references data,
for various Ri taken in {100, 200, 400} and under constant
Re = 400. For these values of Reynolds and Richardson
numbers, the conducto-convection problem is dominated

by natural convection phenomena. These values have been
chosen in accordance with the study of Li et al. (2013)
on reversal flows in the asymmetrically heated channel. A
vertical velocity profile at the entrance (inlet) of the channel
is considered in accordance with the value of Re = 400. Its
profile is defined by the following equation:

ui(x) = 6.1x(1 − x),

where i corresponds to the inlet of the channel. This
configuration case is named Case 1 and the numerical
simulation are going to be done without optimization in
order to have the values of J1 and J2 as reference data and
see the influence of adding material in an empty channel on
both work of pressure forces and thermal exchange.

In Section 6.2, we compare optimization results obtained
with the systemic cost functions (8) and (9) when choosing
sigmoid-type functions (11) and (12) with those obtained
with Ramp-type functions (13). The comparison is made for
Richardson number Ri ∈ {100, 200, 400}. These numerical
simulations are referred to as Case 2.

In Section 6.3, we solve the optimization problem (4) for
Re = 400 and Ri = {100, 200, 400}. We used the systemic
cost functions given in (8) and (9) and chose sigmoid-type
functions (11) and (12) for the interpolations. This study
case corresponds to the configuration Case 3.

Finally, in Section 6.4, we investigated the topology
optimization problem for the case of pure natural convection
which is going to be labeled as Case 4. We chose various
Rab numbers taken in {3 × 105, 4 × 105, 5 × 105}, which
corresponds to a laminar flow. We used the systemic cost
functions defined in (8) and (9) and chose sigmoid-type
functions (11) and (12) for the interpolations.

These four investigated configuration cases are summa-
rized in Table 1.

All optimization results performed in this paper corre-
spond to the thermal and mechanical powers defined as J1

and J2. Moreover, in order to be sure that no material is
added at the entrance of the channel during the optimization
process, we solved the problem by imposing fluid domain
at the lower part of the channel, i.e.,

γ = 0 for the elements in [0, 1] × [0, 1].
We want to enhance heat transfer in the channel and since
adding material on the hot plate can affect the heat transfer
according to its conductivity, we impose fluid domain near
the heated plate. This reads

γ = 0 for the elements in [0, 0.10] × [2.5, 7.5].
It is important to note that the problem is purely academic.
In our numerical simulations, the Prandtl number is set to

Pr = 0.71,
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Table 1 Investigated configuration cases

Case Case 1 Case 2 Case 3 Case 4

Cost functions No optimization J1,J2 J1,J2 J1,J2

(8), (9) (8), (9) (8), (9)

Interpolation functions No optimization Sigmoid-type and Ramp-type Sigmoid-type Sigmoid-type

(11), (12),(13) (11), (12) (11), (12)

Natural convection Re = 400 Re = 400 Re = 400 Rab

Ri = {100, 200, 400} Ri = {100, 200, 400} Ri = {100, 200, 400} {5 103, 5 104, 5 105}

which corresponds to a fluid/liquid and the ratio of
diffusivity have been therefore set to

ks

kf

= 3.

As they are in the range of realistic problems, they are
thought to be representative of the problems that can be
physically encountered. The parameters appearing in the
sigmoı̈d interpolation function (11) are chosen according to
the previous study (Ramalingom et al. 2018). We then take

γ0 = 20, τ = 0.6 and γmax = 2 × 10 5,

keeping in mind that similar results have been obtained for
γmax = 10 6.

5.1 Monitored quantities

Thermal quantities are monitored in the heated region and
at a discrete vertical coordinate located at the end of the
heated plate, namely for y = 3H/2 (cf. Fig. 1). The bulk
temperature (θb), the Nusselt number (Nu2) at the end of the
hot plate y = 3H/2, and the local Nusselt number (Nu1)
integrated along the hot plate are defined as in Desrayaud
et al. (2013), respectively:

θb(y) = 1

qin

∫ 1

0
u(x, y) θ(x, y) dx, y = 3H/2

Nu2(y) = 1

θ(0, y) − θb(y)
, y = 3H/2

Nu1(y) =
∫


1

1

θ(0, y)
dy, y ∈ 
1

(19)

where qin is the mass flow rate entering the channel at
y = 0.

For each value of Ri and Rab, we compute the proportion
Qt of material added in the domain Ω as in Ramalingom
et al. (2018):

Qt = 1

γmax Vtot

∫
Ω

hτ (γ ) dΩ, (20)

where Vtot = 2Hb is the total volume of Ω .

6 Results and discussion

6.1 Preliminary findings

This section aims to give numerical findings about natural
convection in the vertical channel asymmetrically heated
(Case 1). We consider the single channel with its geometric
limitations to solve the problem of natural convection
flow in the channel and we model the thermal and
dynamic boundary conditions at the exact apertures. The
thermal radiations and the heat conduction inside the solid
walls are disregarded. According to the results presented
by recent studies (Desrayaud et al. 2013; Brangeon
et al. 2015; Ramalingom et al. 2017), pressure boundary
conditions at the top and bottom sections based on Local
Bernoulli relation are chosen in the current numerical study.
We compute thermal quantities defined in the previous
Section 5.1 without optimization process. These results (cf.
Table 2) are going to be used as references within this paper
(mentioned as Case 1). We solved the problem by using
these settings: Re = 400 and Ri = {100, 200, 400}.

We can first observe that J1 is smaller for Ri = 400,
contrarily to J2 which is bigger. Indeed, Table 2 indicates
that the heat transfer in the channel is weaker for Ri = 400
for Case 1. So, when natural convection forces are more
dominant in our conducto-convection problem, mechanical
power increases and thermal power decreases.

Figure 3 shows in blue color negative values of
adimensional vertical component of velocity for various
Ri. The latter corresponds to the reversal flow which is
bigger and larger at the end of the channel when Ri
increases. The streamlines (Fig. 3) represent the fluid flow
in the channel at various Ri values. So, as highlighted by
Desrayaud et al. (2013), the natural convection problem
in the vertical channel asymmetrically heated corresponds
to a boundary layer flow with a reversal flow at the
exit.

6.2 Comparisons between interpolation functions

In this section, we compared the solutions of the optimiza-
tion problem obtained with the sigmoid functions (11) and
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Table 2 Monitored quantities for configuration cases corresponding to constant Re = 400, ω = 0.5, and Ri = {100, 200, 400}, for Case 1 (without
optimization), Case 2 (sigmoid-type and Ramp-type interpolation functions), and Case 3 (sigmoid-type interpolation functions)

θb Nu2(3H/2) Nu1 J1 J2 Qt

Case 1 Without optimization

Ri = 100 0.01747 12.932 13.611 −5.011 0.0232 Without γ

Ri = 200 0.07015 10.508 7.692 −16.477 0.0888 Without γ

Ri = 400 0.07006 10.510 7.694 −156.12 0.0714 Without γ

Case 2 Comparison between Ramp-type and sigmoid-type interpolation functions

Ri = 100 sigmoid 0.01759 10.549 12.872 −5.011 0.0232 1.0%

Ri = 200 sigmoid 0.01759 14.349 15.399 −9.173 0.0220 4.1%

Ri = 400 sigmoid 0.01759 16.998 18.904 −17.127 0.0209 8.6%

Ri = 100 Ramp 0.01747 12.932 13.617 −5.010 0.0232 0.2%

Ri = 200 Ramp 0.01746 15.228 14.617 −9.173 0.0220 0.6%

Ri = 400 Ramp 0.01738 17.989 17.641 −17.127 0.0209 0.8%

Case 3 With sigmoid interpolation functions

Ri = 100 0.01759 12.966 12.873 −5.011 0.0232 1.0%

Ri = 200 0.01744 15.213 15.489 −9.174 0.0219 4.3%

Ri = 400 0.01738 17.992 17.657 −15.427 0.0240 9.6%

(12) and the Ramp functions (13). Parameters for the opti-
mization problems mentioned as Case 2 are set as follow:

Re = 400, Ri = {100, 200, 400}, ω = 0.5.

Simulations of these configuration cases with Ramp-type
interpolation functions required to add a volume constraint
in optimization problem (4)

Qt ≤ Q0, Q0 ∈ [0, 1],

Fig. 3 Case 1: Streamlines and reversal flow in blue for Ri = 100 (a),
Ri = 200 (b), and Ri = 400 (c)

where Qt is defined in (20). In our numerical simulations,
we chose

Q0 = 0.1,

which amounts to fill the channel with at most 10% of solid.
To compare the two interpolation functions, we did some
numerical experiment (not presented here) using RAMP but
without setting a maximal ratio of material in the channel.
In such cases, the algorithm filled successively the channel
with material before draining it. Therefore, the problem did
not give an optimized solution. This is the first noticeable
difference between the two types of interpolation function.

In order to correctly make comparisons, we also add
the constraint volume for the simulations with sigmoid
functions (Case 2), i.e., the maximal ratio of material is set
to Q0 = 0.1. This parameter corresponds to the maximal
global of porosity in Marck et al. (2013), for example.

Secondly, with the Ramp functions, we chose to solve
three times the optimization problem since we adopted the
strategy from (Borrvall and Petersson 2003; Marck et al.
2013) in order to make the Ramp functions more convex.
By varying q parameter in interpolation functions (13), we
can tolerate the existence of intermediate states mainly at
the beginning of the iterates of the algorithm solving the
optimization problem and less at the end. So, parameter
q takes successively the values {0.01, 0.1, 1}. Likewise,
we are going to investigate a continuation strategy for
the sigmoid interpolation function and τ is going to take
successively the values τ ∈ {0.6 × 10−4, 0.6 × 10−3, 0.6}.
Figure 4 shows the interpolation functions for these values.
As explained by Ramalingom et al. (2018), thanks to the
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Fig. 4 Interpolation functions for τ = {6 × 10−5, 6 × 10−4, 0.6}

parameter γ0, we can vary the proportion of material added
in the domain by the algorithm.

We represent in Figs. 5 and 6 the evolution of both
systemic cost functions over iterations. One can see that,
for both interpolation functions, the stopping criterion is
reached with a number of iteration that is roughly the same,
namely below 20,000. Note that, for Ri = 100, the values of
J1 and J2 after optimization are nearly the same while the
other monitored quantities vary. We therefore represent the
value of Ĵ (see (6)) in Fig. 7 to show that this cost function
is indeed minimized and that the number of iteration needed
to reach the stopping criterion is again similar for both
interpolation functions.

Whichever the interpolation functions chosen, Ramp-
type or sigmoid-type, it can be observed that the reversal
flow (cf. Fig. 3) is suppressed by the optimized design (cf.
Figs. 8 and 9). Indeed, material added by the algorithm at
the end of the channel prevent the fluid from re-entering in
the channel. Likewise, thermal and mechanical powers are
identical to few decimal places at the end of the optimization
process (cf. Table 2).

Nevertheless, the structure of material domain obtained
is quite different when we use the Ramp-type interpolation
functions. The optimized designs obtained in Fig. 9 top
contain some holes in which fluid can circulate. Figure 10
is an enlargement of the solid domain at the top-end of the
channel in order to see the distribution of solid elements in
the optimized designs. However, fluid velocity is zero in this

Fig. 5 Evolution of J1 (top) and J2 (bottom) over iteration numbers
with Ramp-type interpolation functions—Case 2

area as shown in Fig. 9 bottom. So, we observe less pieces of
isolated material when we solved the optimization problem
with the sigmoid-type interpolation functions. The frontier
between fluid and solid obtained with the sigmoid-type
interpolation functions is smooth.

Finally, heat transfer in the channel is approximately in
the same order when the topology optimization problem is
solved with the sigmoid-type interpolation functions for any
considered Ri. As can be seen in Table 2, for any considered
Ri, Nusselt number Nu1 computed with sigmoid-type
interpolation function records a difference between 5.07 and
6.6% lower compared with Nu1 computed with Ramp-type
interpolation function.

So, optimization process with sigmoid-type interpolation
functions gave smooth shapes as designs obtained did not
contain holes in which fluid can circulate. This contribution
accounts for an increase of the heat transfer up to 146%
compared with the reference Case 1.
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Fig. 6 Evolution of J1 (top) and J2 (bottom) over iteration
numbers with sigmoid-type interpolation functions, for various Ri,
at constant Re = 400. We used a continuation strategy with τ ∈
{0.6 10−4, 0.6 10−5, 0.6}—Case 2

We end this section with some general remarks and
comments regarding the results obtained with RAMP and
sigmoid interpolation functions. First, as seen from Table 2,
the monitored quantities, namely the bulk temperature, the
Nusselt numbers, and the values of the cost function at the
end of the optimization procedure are slightly the same.
As a result, whichever the interpolation technique used,
both succeed in reducing pressure losses and maximizing

Fig. 7 Evolution of Ĵ over iteration numbers for Ri = 100 with
Ramp-type (top) and sigmoid-type interpolation functions—Case 2

heat transfer in the vertical channel. The major difference
is the optimized shape and the quantity of material of
the optimized design. Indeed, fluid-solid boundaries of the
sigmoid designs are smooth while those obtained with
RAMP are defined by multiple holes. Nevertheless, it is
worth noting that both designs can be considered very
similar in the sense that the zones where the velocity
vanishes are nearly the same for both interpolation functions
(see Figs. 8 and 9). This observation gives an explanation

Table 3 Monitored quantities for configuration cases corresponding to constant Re = 400, ω = 0.5, and Ri = {100, 200, 400}, Case 2
(sigmoid-type and Ramp-type interpolation functions). We used a continuation strategy with τ ∈ {0.2, 0.4, 0.6}

θb Nu2(3H/2) Nu1 J1 J2 Qt

Case 2

Ri = 100 sigmoid 0.01750 12.463 14.176 −5.011 0.0232 1.0%

Ri = 200 sigmoid 0.01758 15.247 14.622 −9.174 0.0220 4.3%

Ri = 400 sigmoid 0.01738 17.209 18.533 −15.427 0.0240 9.6%
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why they achieved similar performances regarding the
monitored quantities from Table 2.

Note also that, thanks to its very sharp nature, the
sigmoid interpolation function affect more zones of the
computational domain to solid than RAMP. Therefore,
RAMP allows less material to be added in order to minimize

Fig. 8 hτ (γ ) and streamtraces (top), adimensional vertical velocity
component (bottom) obtained with sigmoid-type interpolation func-
tions for various Ri and continuation approach for τ ∈ {0.6 ×
10−5, 0.6 × 10−4, 0.6}—Case 2 with sigmoid interpolation functions.
a Ri = 100. b Ri = 200. c Ri = 400

the cost function than sigmoid. As a result, the sigmoid
interpolation function could be considered either as shape
optimization or level-set method. However, one major
difference is that we do not need any mesh refinement

Fig. 9 hτ (γ ) and streamtraces (top), adimensional vertical velocity
component (bottom) obtained with Ramp-type interpolation functions,
for various Ri—Case 2 with Ramp interpolation functions. a Ri =
100. b Ri = 200. c Ri = 400
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Fig. 10 Zoom on the solid domain obtained with Ramp-type (top)
and with sigmoid-type (bottom) interpolation functions for various
Ri—Case 2. a Ri = 100. b Ri = 200. c Ri = 400

techniques. In addition, we have the parameter τ at hand that
can still be tuned to have non-sharp interpolation function
which, even if they cannot be convex as RAMP, could
still achieved more complex designs. The latter is however
beyond the scope of the paper which was formerly intended
to solve topology optimization problem for buoyancy-
driven flows by introducing new cost functions.

Remark 3 (Comparison between two continuation
strategies) We also did numerical simulations with a con-
tinuation strategy with τ ∈ {0.2, 0.4, 0.6}. This amounts to
start with a very sharp interpolation function. With these
values, we obtain roughly the same monitored quantity as
those we get without continuation strategy and τ = 0.6
which is so-called Case 3 (compare Case 3 from Table 2
with Table 3). We emphasize that the quantity of material
is roughly the same as well as the designs (see Fig. 11 for
Case 3) and we thus do not show them.

It is worth noting that the monitored quantities are
slightly the same whatever the parameters used in the
continuation strategy (compare Case 2 from Table 2 with
Table 3). The only real difference is that some piece of

isolated material disappear, namely some zones where the
velocity of the fluid vanishes are filled with solid, when
using the continuation strategy with τ ∈ {0.2, 0.4, 0.6}
(compare Figs. 10 and 11). This fact and since the sigmoid
with τ ≥ 0.2 is sharper than with τ ≥ 6 × 10−5

actually explain why the quantity of material increases in

Fig. 11 hτ (γ ) and streamtraces (top), adimensional vertical velocity
component (bottom) obtained for various Ri—Case 3. a Ri = 100. b
Ri = 200. c Ri = 400
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Table 4 Monitored quantities for pure natural convection configuration case at various Rab—Case 4

θb Nu2(3H/2) Nu1 J1 J2 Qt

Case 5: pure natural convection case without optimization

Rab = 5 × 103 0.18709 4.275 3.330 −0.028 0.0707 Without γ

Rab = 5 × 104 0.09002 5.633 4.939 −0.008 0.0222 Without γ

Rab = 5 × 105 0.06617 5.140 7.273 −5.5e−04 0.0071 Without γ

Case 4: pure natural convection case
Rab = 5 × 103 0.18712 4.333 3.311 −0.076 0.0707 0%
Rab = 5 × 104 0.08884 5.625 4.969 −0.038 0.0222 2.21%
Rab = 5 × 105 0.05072 5.986 7.451 −0.013 0.0070 5.37%

this case and why the monitored quantities does not vary
significantly.

Regarding the continuation strategy, since differences
between the monitored quantity for the two set of τ used
does not have significant differences with respect to those
computed with only τ = 0.6 (see Remark 3), we chose to
not use such continuation strategy in the two next sections.
To conclude this section, both interpolation techniques have
pros and cons and, since the results are either slightly the
same or can be linked together, we choose to work with the
sigmoid in the remaining sections of this paper.

6.3 Topology optimization problem for constant
Re = 400 and various Ri

This section presents the solution of the optimization
problem for various Ri. We used the systemic cost functions
given in (8) and (9) and chose sigmoid-type functions (11)
and (12) for the interpolations. This study case corresponds
to the configuration Case 3.

Figure 12 represents the evolution of J1 and J2 over
iterations for various Ri. One can then see that our algorithm
succeeds to minimize/maximize one or other cost functions
for any Ri. We observe that mechanical power decreases
over iterations while thermal power increases. So, our
algorithm succeeds to converge to an optimized solution for
this studied case.

It can be observed that optimized design suppresses
the reversal flow (cf. Fig. 3) as seen in previous studied
case. Moreover, the domain material at the end of the
optimization corresponds to the reversal flow represented in
Fig. 3. Finally, as one can see from Fig. 11, adimensional
vertical component of the velocity has a positive value in
the channel after optimization and vanishes or is about 5.5×
10−5 which is small enough for this zone to be considered
as solid. Our objective functions give an optimized design
with no physical error as a non-null velocity in the solid
regions without connectivity as mentioned by Kreissl and
Maute (2012) and Lee (2012).

Concerning the quantity of material added in the channel,
the optimization algorithm tends to add more material in the
domain (cf. Fig. 11 top) when Ri increases. This proportion
of material is about 9.6% of the domain when Ri = 400
and contributes to modifying the circulation of the flow in
the channel, as the fluid is closer to the heated wall. So, in

Fig. 12 Evolution of J1 (top) and J2 (bottom) over iteration numbers
with sigmoid-type interpolation functions—Case 3
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order to minimize mechanical power and maximize thermal
power, the strategy of algorithm consists in suppressing
the reversal flow at the end of the channel and adding
material so as to oblige the fluid flow near the heated wall.
Besides, Table 2 shows that the mean Nusselt number Nu1

is multiplied by a factor 2.3 after optimization for Ri = 400.
Likewise, the Nusselt number at the end of the hot plate
Nu2(3H/2) is multiplied by a factor 1.7 after optimization
for Ri = 400. Therefore, Nusselt numbers increased when
Ri increased, so the heat transfer is correctly enhanced in
the optimized design obtained. Nevertheless, this addition
of material contributes to reducing strongly J1 for small
improvements of J2 (cf. Fig. 12). This situation has already
been observed by Pietropaoli et al. (2019) who noticed in
their study in forced convection some small improvements
on the heat exchange efficiency while pressure drop remains
relatively high.

6.4 Topology optimization problem in case of pure
natural convection for various Rab

This section presents the solutions of the optimization
problem in case of pure natural convection. We used
the sigmoid-type interpolation functions and solve the
optimization problem (3) without adding the constraint of
volume. So the proportion of material is just controlled with
parameters γ0 = 20 of the sigmoid interpolation functions.
We set the Rayleigh number Rab to different values:

Rab ∈ {3 × 105, 4 × 105, 5 × 105}.

As previously mentioned, the pure natural convection
topology optimization problem is furthermore solved
without optimization process. The references monitored
quantities are showed in Table 4.

Fig. 13 Evolution of Ĵ over iteration numbers with sigmoid-type
interpolation functions, for various Rab numbers—Case 4

Figure 13 represents the evolution of Ĵ over iterations for
various Rab. One can see the convergence of the algorithm
for any Rab.

Figure 14 shows the optimized designs obtained at
various Rab. The optimization algorithm adds few quantity
of material in the domain, less than 6% (cf. Table 4). When
no reversal flow exists, in particular for Rab = 3 × 105, the
optimization algorithm did not add material in the domain.
Also, as seen with the previous configuration cases, the
fluid flow structure is thus modified and vertical component

Fig. 14 hτ (γ ) and streamtraces obtained for various Rab (top),
adimensional vertical velocity component obtained for various Rab

(bottom)—Case 4. a Rab = 5×103. b Rab = 5×104. c Rab = 5×105

2017



D. Ramalingom et al.

Fig. 15 Zoom on the solid domain obtained for the configuration case
of pure natural convection—Case 4. a Rab = 5×103. b Rab = 5×104.
c Rab = 5 × 105

of the velocity is not negative yet (cf. Fig. 14 bottom).
Moreover, when we enlarge the top-end of the optimized
designs in Fig. 15, we can observe the presence of fluid
holes without solid matrix in the material domain acting as
isolation from the fluid. This composite material constitutes
an insulation as its global conductivity tends to the one of
the fluid. The heat transfer in the channel is quite weak
compared with previous studied cases (Case 3), less than
2.5% for values of Rab compared with the reference study
case.

Therefore, when Rab increases, which corresponds to an
increase of thermal flux at the hot plate of the channel, the
algorithm adds more material at the top-end of the channel
in order to suppress the reversal flow (which contributes to
reduce J1) and to force the fluid circulation closed the hot
plate. Indeed, Fig. 15 indicates material takes up about the
half width of the channel, above the hot plate. This strategy
increases the fluid velocity in this Section 14 bottom, and so
the Nusselt number Nu2(3H/2).

7 Conclusion

An optimization problem considering both pressure drop
minimization and heat transfer maximization in the
asymmetrically heated channel has been examined. After
discussing some limits, we identified for classical pressure-
drop cost functions, two objective functions are investigated
representing the work of pressure forces for the mechanical
power and heat exchanges with the thermal power. These
functions allow to obtain optimal designs and they are
reduced for all values of Richardson number and Rayleigh
numbers considered in this study. Two different types of
interpolation function are applied and compared: Ramp-
type and sigmoid-type. They have pros and cons and,
since the results are either slightly the same or can be
linked together, they can be freely chosen for dealing

with natural convection topology optimization problem.
Then, the problem is handled in natural convection for
constant Reynolds number set to 400 and several values
of Richardson number taken in {100, 200, 400}. Second,
the problem is handled in pure natural convection with
various values of modified Rayleigh number taken in {5 ×
103, 5×104, 5×105}. Several conclusions have been drawn.
First of all, the optimized design suppresses the reversal
flow in the channel. That contributes to reduce pressure
losses and modify the circulation of fluid in the channel.
Then, the new expressions of cost functions converge over
with a number of iterations which are similar for both
interpolation functions while the optimized designs show
a better connectivity of the solid region when using the
sigmoid. Values of mechanical power and thermal power
are closed for both interpolation function used. Moreover,
this approach that consists of dissociating quantities in
the expression of cost functions by considering average
quantities is well adapted to natural convection phenomena.
In case of pure natural convection, when the fluid flow is
laminar, the algorithm adds less than 6% of material and
we obtain composite material which acts as an insulating.
Finally, thermal exchanges are evaluated by the calculation
of Nusselt number at the hot plate and based on the bulk
temperature. The optimization algorithm is able to increase
thermal exchanges while maintaining the pressure losses
due to friction, thanks to the combined objective functions
used. Nevertheless, the reduction of losses of charge is
more significant than the improvement of heat transfer.
In conclusion, this study highlights the importance of the
expression of cost functions in a topology optimization
problem, dominated by natural convection forces. The
influence of the Richardson is observed on the quantity of
material added in the optimized channel. As future work, we
suggest a more complete heat and mass transfer model to be
considered, as pure natural convection problems in unsteady
regime and radiation problems.
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