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Abstract

This paper deals with the finite element approximation of the Darcy-Brinkman-
Forchheimer equation, involving a porous media with spatially-varying porosity,
with mixed boundary condition such as inhomogeneous Dirichlet and traction
boundary conditions. We first prove that the considered problem has a unique
solution if the source terms are small enough. The convergence of a Taylor-
Hood finite element approximation using a finite element interpolation of the
porosity is then proved under similar smallness assumptions. Some optimal
error estimates are obtained if the solution to the Darcy-Brinkman-Forchheimer
model are smooth enough. We end this paper by providing a fixed-point method
to solve the discrete non-linear problems and with some numerical experiments
to make more precise the smallness assumptions on the source terms and to
illustrate the theoretical convergence results.
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1. Introduction

The Darcy-Brinkman-Forchheimer (DBF) model for porous media is ob-
tained from the incompressible Navier-Stokes equation in a porous media through
volume averaging. The latter are then completed with closure models for
the unknown terms arising in the volume averaged equations. We refer to
[46, 16, 37, 48, 49] for the physical modeling of fluid flows in porous media
based on volume averaging of the Navier-Stokes equations and the derivation of
the DBF model.

Regarding the mathematical study of the steady-state DBF equation, Kaloni
& Guo [27] studied the case where the convective non-linear terms vanishes
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and show that this problem has a solution for inhomogeneous Dirichlet bound-
ary conditions which is unique for small enough source terms. The existence
and uniqueness of solution to the full non-linear problem with inhomogeneous
Dirichlet boundary condition can be found in [42, 41]. It is worth noting that
the results from [27, 42, 41] have been obtained with similar techniques. The
latter are based on the study of a finite dimensional approximation of the non-
linear variational problem whose well-posedness comes from [18, p. 597, Lemma
IX.3.1] (see also [45, p. 164, Lemma 1.4]) and next proving that the limit sat-
isfy the variational formulation of the DBF model. The existence of solution
for homogeneous Dirichlet boundary conditions when considering a generalized
Forchheimer term have been obtained in [47] using the Leray-Schauder theo-
rem and the uniqueness again holds for source terms that are small enough.
We emphasize that the need of small data to ensure well-posedness of some
non-linear PDE is quite classical and is also required when dealing with incom-
pressible Navier-Stokes equation with homogeneous Dirichlet conditions (see e.g.
[45, 18]) or fluid-porous media interface problems [14, 20].

In this paper, we are interested in the finite element approximation of the
Darcy-Brinkman-Forchheimer equation with mixed boundary conditions since
such setting is involved in many physical applications such as those from [46, 1]
(see also [42, p. 39, Section 2.4] and [41, Section 3]). As a result, we first
need to study the existence and uniqueness of solution to the DBF problem
in this setting. Since the model we are interested in is derived from Navier-
Stokes equations, we recall below some works dealing with the existence and
uniqueness of solution to incompressible steady-state Navier-Stokes equations
in the case of mixed boundary conditions. The regularity of the solutions for
three dimensional Lipschitz domain with homogeneous mixed boundary condi-
tions involving Dirichlet on some part of the boundary and, on the other part, a
vanishing normal trace together with either zero tangential part of the normal
stress tensor or the curl of the velocity can be found in [15]. In the case of
polyhedral domains with more general inhomogenous mixed boundary condi-
tions and non-divergence-free velocity fields, one can found existence, unique-
ness and regularity results in [29] (see also [28] for similar results for Stokes
flows). Finally, the existence and uniqueness of solution to Navier-Stokes equa-
tions with mixed inhomogeneous conditions have been considered in [36] where
the inhomogeneous Dirichlet boundary conditions have been handled thanks to
the introduction of an additional variable. The latter thus yields a non-linear
saddle-point problem very similar to the standard weak-formulation of the in-
compressible Navier-Stokes equation but with a continuous bilinear form b that
is different from the usual one since it does not only involves the divergence
of the velocity but also a surface term taking into account the inhomogeneous
Dirichlet condition. Regarding the previously mentioned results, even if the
steady state incompressible Navier-Stokes system and the DBF model have a
similar structure, we cannot deduce from them the existence and uniqueness of a
solution to the DBF problem with mixed boundary condition. A first part of the
present paper is then going to be dedicated to proved existence and uniqueness
of solution to the DBF problem with mixed boundary conditions.



Regarding the convergence of a finite element approximation to the DBF
problem, there is actually a large literature on the analysis of mixed finite el-
ement method applied to the (generalized) Darcy-Forchheimer model (see e.g.
[34, 25, 40, 26, 38]). Nevertheless, compared to the Darcy-Forchheimer model,
the DBF equation also involves a nonlinear convective term and a Laplacian of
the velocity and seems, to the best of our knowledge, to have been less studied.
We can still refer to [35] where the convergence of finite difference method on
a staggered grid applied to the unsteady DBF coupled to a solute transport
equation have been obtained. For the steady-state DBF, the case of inhomo-
geneous Dirichlet boundary condition have been studied in [42] where optimal
error estimates have been obtained for smooth enough solution. We would like
to emphasize that all the aforementioned convergence results are obtained either
in the case of a homogeneous porous media or without considering a discrete
version of the porosity field in the discrete problem. Note however that having a
finite element approximation of the porosity has its own interest since the latter
is usually used in the numerical computations. Another advantage of having
a finite element formulation with discrete parameters is when one deals with
so-called topology optimization problems (see e.g. [4, 43, 5, 39]) or parametric
optimization problem [6, Chapter VI]. Indeed, using discretization of these pa-
rameters are needed to define discrete optimization problem and to prove the
convergence of discrete optimal solution toward the continuous optimal solu-
tions.

In this paper, we are interested in proving the existence and uniqueness
of solution to the Darcy-Brinkman-Forchheimer model with a spatially-varying
porosity as well as the convergence of a finite element approximation involving
a discrete porosity. The paper is thus organized as follow: we begin to prove an
existence and uniqueness result for a DBF model with mixed boundary condi-
tions. A finite element method using a discrete porosity is then investigated for
which we prove the convergence as well as optimal error estimates for smooth
enough solutions. We study next the convergence of a fixed point iteration used
to solve the discrete non-linear problem. Since all our results are obtained by
assuming that the source term are small enough, we provide some numerical
simulations to get more precise estimates on how small these source term have
to be in order for the discrete problem to be solve with the fixed point method.
This paper ends with some numerical optimal error estimates.

2. Steady-state Darcy-Brinkman-Forchheimer model for porous me-
dia

We consider a viscous flow inside a porous medium embedded in a compu-
tational domain Q C R? (d = 2,3). The domain is assumed to be a bounded
open set with Lipschitz boundary with outward unitary normal 7. We assume
the porous media has a spatially varying porosity € : © € Q — ¢(z) € (0, 1] and
that it is modeled by the Darcy-Brinkman-Forchheimer equation. The latter



can be found in e.g. [21, 30, 47] and in dimensionless form reads as follows
—div (2Re 'S (@) — il @ @) + eVp + a(e)i + Be)dld] = ef, inQ,
div(ew) = 0, inQ,

) M)
where Re is the Reynolds number and f is an external force field (e.g. gravity).
The tensor S(@) is the symmetric part of the Jacobian matrix of the velocity
field 4. We emphasize that one always has (1) = (1) = 0 and thus the
standard Navier-Stokes equation is recovered for ¢ = 1.

Remark 1. Using the formula
div(d ® ¥) = div(@)7 + (4 - V) 7,

together with the incompressibility condition div(ed) = 0, the non-linear term
can be written as

div (et ® @) = div(e@)il + ¢ (@ - V)@ = e (@ - V) i.

We consider the following set of boundary conditions

ﬂ: - 0 on Fun
U= ﬁin on Fin; (2)
e(2Re 'S(@) —p) =0 on Loy,

where we set 02 = I', U T, U Ty where each part correspond respectively to
the walls, the inlet and the outlet. We also assume throughout this paper that

D] >0, |Tin| >0, [Tout| > 0 and Ty, N Toug = 0.

The porosity, the Darcy and Forchheimer terms satisfy the next set of assump-
tions

e € L®(Q)NWH(Q) withr>dand 0<ey <e(z) <1ae. inQ
s € [0, 1 a(s) € RT and s € [gg, 1[— B(s) € RT are differentiable.(3)
s € [e0, 1[— /(s) € RT and s € [eg, 1[— B'(s) € RT are bounded.

We emphasize that (3) are satisfied by many example of Darcy and Forchheimer
coefficients one may find in the literature (see e.g. [3, 46, 16, 41]).

2.1. Well-posedness of the Darcy-Brinkman-Forchheimer problem

We work with inhomogeneous Dirichlet boundary conditions that needs some
special functional spaces to be handled properly. For any bounded open set O
with Lipschitz boundary, we note I'c C 9O a part of the boundary. The trace

space H&éQ (T¢) is defined in [32, Theorem 11.7] (see also e.g. [31, 33] where
some properties are recalled) and can be obtained as the completion of smooth
function with compact support in I'. with respect to the norm

2 2 lp(z) — #(y)|2
= — " dxdy.
etz ey = lullzz e, +/rc /r oyt Y

4



Denoting by Egu the extension by 0 outside I'., we have that any u € Héo/z (Te)
satisfy Eou € HY/?(00) with

1Eo ()|l g2 00y < C H“”Héf@) )

for a generic constant C' > 0. As a result, we have the equivalent definition of
this trace space

Hoy* (T) = {u € H'? (L) | Eop € Hl/Q(E)(’))} :

Moreover, the linear application Ey : p € H(%Q (Te) = Eo(p) € HY?(00) is
continuous. We finally emphasize that if Héo/z (T¢) is endowed with the next

norm

2 L 2 W(S)|2
2oy = llnsncry + / ety

then it is a Banach space.
We are now in position to give the weak formulation to Problem (1,2). We
introduce the following Hilbert spaces

X, = {7 e HNQ)* | dlr,—o}, X:={7c H'(Q)?| 5

rur, =0}

Using Korn inequality, we get that

il = I1S(@l a0 =/ [ S(@:5() o
is a norm on either X; or X where A:B = trace(AB). We also denote by
Ck > 0 the constant such that
4]l L2 () < Ok lldllx »

and emphasize it only depends on 2. Thanks to the assumptions on I'y,; and
I € Hééz (Fin)d and we thus consider a source term

i, any @ € X5 satisfy o
Uin € HééQ (T';m)* as inlet velocity. Lemma 17 ensures that Problem (1,2) is
then equivalent to the following variational formulation
Find (ii,p) € X1 x L*(Q) such that
a Tin — ﬁin and
ale;ih,0) + (e 0, 0,0) + blesdp) = (Foo) | WieX, (4)
X'xX
q 0

where F = ¢ f and



To deal with the inhomogeneous Dirichlet condition at the inlet, we intro-
duce an extension V of U;n such that diV(EV) = 0 whose existence is provided
by Lemma 16. From this, @ = @ + V where @ € X satisfy the variational
formulation

Find (w,p) € X x LQ(Q) such that
;,

a(e; W, 0) + b(e;T,p) = (G(e;W),V)x/yx, VU EX, (5)
b(e;w,q) =0, Vq € L*(Q),
where the non-linear term is defined as
(G(e; W), V)x/yx = <F, U>X’><X —c(;W+V, W+ V,0) —ale; V,7).  (6)

We are going to study the well-posedness to Problem (5) with a fixed-point
approach. Therefore, we begin to study the linear problem

Find (@, p) € X x L?(2) such that
ale;w,¥) + b(e; ¥,p) = <F, U>X'xx’ Vo e X, (7)
be;@,q) =0, Vg € L*(),

where F' € X is some source term. Problem (7) is a standard linear saddle-point
problem whose well-posedness has been studied in e.g. [12, I1.1, Proposition 1.3],
[17, p. 474, Theorem A.56] or [19, p. 59, Theorem 4.1]). Since the bilinear form
a(e; -, ) is continuous and coercive, namely

a(e; @, 8)| < (Ck Nla@)l| gy + 2Re ") il 1Flx -
ale; @, i) = 2Re” e [k , (8)

it only remains to prove the bilinear form b satisfy an inf-sup condition. The
latter is obtained in the next lemma.

Lemma 2. Let v > 0 be the inf-sup constant when £(z) = 1 for all x € Q.
Assume that € € L=(Q2) N WL (Q), with 7(2) > 2 and r(3) = 3 and that

Ve e, 0<ey<e(x) <1
Then there exists a constant y(g) > 0 such that

b
inf sup _b=sdg) > y(e),
412\ (0} aex\(oy Il x llall =)
where there is a generic constant C > 0 such that v(g) > 0 is given by

) :
ye) =7 .
C (e + €52 IVel o)




PRrROOF. Adapting techniques from [8, p. 6, Eq. (2.13)] to the boundary condi-
tions considered in this paper, the following inf-sup condition can be obtained
b(1; 4, q)

inf  sup-———— >~ >0(.
g€ L2 (N [0} zex [[illx lall 20

From [19, p. 58, Lemma 4.1], the inf-sup condition is equivalent to the state-
ment: for any ¢ € L?(Q) there exists a © = #(q) € X such that

— 2 —
b(1;7,9) = Cr ll4llL2 (o) and [[d]x < Collgll 20y » (9)

where, in that case, v = C1/Csy. Since the application @ € X — e € X is an
isomorphism (see [7, p. 3, Lemma 2.1]), we have some @ € X such that ¥ = e
and (9) becomes

L _, 2 -
b(1;eti, q) = b(e; i, q) > Ch llqllp2(q) and ledlx < Czllqllp2(q) -
To conclude, note that

el

lalx = ||%

< C (55" + €32 IVel ooy ) el
X

< Collall ey © (s + a2 Vel o)

A

from which we get that for any ¢ € L?(Q), there exists a @ = (q) € X so that
S 2 _ ~
b(e; 4, q) = C1 a2y and [lullx < CallgllLz (o
The desired inf-sup condition then follows with

16 = 2 =4 .
G (5 +e IVell s

From (8) and Lemma 2, we can apply [12, IL.1, Proposition 1.3] (see also
[17, p. 474, Theorem A.56] or [19, p. 59, Theorem 4.1]) to get the existence
and uniqueness of solution to (7).

Theorem 3. Problem (7) has a unique solution (1, p) € Xx L?(S2) that satisfies

[dillx <

(1 o
<5 U e ) 1l
Pl < =5 ( +

where ag (respectively ||a|) is the coercivity (respectively the continuity) constant

of a(g;-,-).




Let @, 7, € X. From the continuous Sobolev’s embedding H'(Q) C L*(2)
together with Holder inequality, we get

|e(e; 4, v, w)| < C (1 + IIﬂ(E)IILoom)) lallx 1911 x [0l x = Cnw [lallx [19]]x [ »

(10)
where C' is a positive constant that depends only on 2. The following result
gives some properties of the non-linear term (6) which are needed to prove the
well-posedness of (7).

Lemma 4. The nonlinear function G(g;-) : X — X' defined in (6) satisfies the
following estimates

— = — 2 —
IGED) I < |[F]| | +20M@? Tl 0 + lall M) [Tinll s r, e

+2C1 |9 %,

1G(e @) - Gle; @)l < Cu (IBlx + 1Bl + M) Wi g7z, ) 180 = ol

where M () = C {551 +e5t ||V5HL3(Q)} and C1, = C(Q) max {1, H,B(s)HLOC(Q)}
with some generic constant C(2) > 0.

PRroOF. Using (10) with Lemma 16, we get

— . 5112
(G @), Dxx] < ||F], 171+ llal | ]| Wl + Cow 131 7+ 7
— =t - 2
< 17k (||, + 2080 @ 1@l i)
. S L2
+ 17l (Jlall M) 1Tl a2, pa + 20 1)

Taking the supremum over ¥ € X with ||7]|x < 1 then gives the first estimate.
For the second estimate, we start by noting that

< Gle;wy) — Gleih), T >xixx= cle; Wy + V, W + V,7) — c(e; iy + V, 01 + V, D)

/Qg (@2 + V) - ¥) (@2 + V) — (1 + V) - V) (s + V) - T

+

/ 8(e) (| + V| (o + V) — | + ¥
Q

(@, + V)) - Fda.

For two vector fields @, b we have the following bounds

= |(@—-b)la - (b - |a])| < |a - b

(1al +181)

@-Vi-b-Vb| < 675’|Vﬁ|+‘5HV(675)‘.




Gathering the previous estimates, there is a constant C'(Q) > 0 such that

|< G(e;wh) — Ge;i), T >xxx| < C(Q) max {17 ||5(€)||Loo(sz)}
X (||U71||x + [[Wallx + M(e) ||ﬁin||Hé(§2(pin)d)
x|l — ek ,

and the proof is thus finished.

We are now in position to prove the existence and uniqueness of solution to
Problem (5).

Theorem 5. Assume that (3) holds. Then there exists 1 > 0 and R > 0 (see
(12) and (13)) such that if

HFHX il g2 0 < 70

there exists a unique (W,p) € X x L*(Q) satisfying the weak formulation (5)
and the estimate
1@ x + llpll L2 () < R

PROOF. Let S: F € X'+ (i, p) € X x L2() where (7, p) € X x L2(Q) is the
unique solution to the linear Problem (7). The non-linear variational problem
(5) is then equivalent to the following fixed point equation

(w, p) = T (@, p), (11)

where

T = 8G with G(, p) = G(e; ).

Let By = {(ma) e X x L2Q)| I9llx + 1Pl 2 ey < R}. Note that 7 : X x

L?(Q) — X x L?(Q) and we thus only need to show that 7 : B — Bpg for
some R > 0 and that T is a contraction mapping.
Thanks to Theorem 3, the operator S satisfy the next bound
_, _ 1 1
HSFH <os|F| L es= Ly (14 ey
XxL2(Q) X/ ag  (e) o

Using now Lemma 4, we obtain
. "
ITlxx 2y < Cs |G D)l < Cs (H+ 205 % )
where

= — 2 -
Y = HFHX + 20N M ()2 [|in 3712 0 + llall M@ Nl gy



If we now assume that Hﬁu s i | /2 i and Ry are such that
X’ 00

(Tin
1 1—/1-8CZCniH
_ < 12
H< SCchL, RO - 4C'NLCVS ( )

then we obtain that
[T llxx 2202y < Ro

and we have thus proved that 7 : B, — Bg,.
To prove that T is a contraction mapping, we use Lemma 4 with (a1, p1),
(Wa, p2) € Bg, which yields

17 (@1, p1) = T (@2, p2) 1200 < Cs [ Gles ) = Gles i)
< CsCr (I llx + 12l + M) il a2, 0 ) 181 = Bl

CsCu (2B + M) Tl oy r,. o) 1480 = Bl

A

IA

If we now chose Ry > 0 and u;, € HééQ(I‘in)d that comply with

1 1 1
il < Greary ™ < 3 (e ~ MO Ilign ) 03

then the application 7 : Br, — Bp, is a contraction mapping.

From (12) and (13), we get that 7 : Bg — Bpr and that 7 is a contraction
mapping with R < min{Rg, R1}. The Banach fixed point theorem then gives
the existence and uniqueness of (W, p) € Br which satisfy (11).

We end this section by noting that Theorem 5 gives the existence and unique-
ness of a solution to (4) since @ = w4 V where V € X; is the divergence-free
lifting defined in Lemma 16.

3. Finite element approximation of the Darcy-Brinkman-Forchheimer
model

We consider a quasi-uniform family of triangulations (see [17, p. 76, Defini-
tion 1.140]) {Tn})~o of © whose elements are triangles (d = 2) or tetrahedrons

(d = 3) denoted by K. We emphasize that Q = UgeT, K. The parameter hy is
the diameter of the circle or sphere inscribed in K and we set

h = max h
KeTy, K

We consider the Taylor-Hood finite element [44] (see also [19, p. 176, Chapter II,
Section 4.2]) which consists in looking for piecewise-polynomial approximations
(’th,ph) € Xy x My, of (Zﬁ,p) € X x LQ(Q) with

h:{UheXIVKGﬁ“ Unlk € Pa(K)},
={qn €C°(Q) | VK € Th, anlx € P1(K)}.

10



It is worth noting that the convergence results proved in this section will also
hold for other finite element spaces.
We now consider some €5, € M}, that approximates ¢ in the following sense

Vo €, g9 <ep(z) <1,
len =€l Lo () < Chllellyioo(q) » (14)
IVen — Vel priay < Ch el > 7> d.

Note that these assumptions are satisfied if e € W1>°(Q) N WL (Q) for [ > 0
and if one takes €, = Z,e where 7, is the global interpolation operator (see [17,
Corollary 1.109 and Corollary 1.110]).

This section is now devoted to finite element discretization of (4) which
actually amounts to consider the finite element discretization of (5) since the
solution of these two problems are related thanks to @ = @ + V. Asa result, if
W, denotes the velocity associated to (5), the finite element approximation of
the solution to Problem (4) is going to be @}, = —&—Ixhv where Zx, : X — X},
is the finite element interpolate operator. The discrete problem associated to
(5) reads

Find (W, pr) € Xp X My, such that
{ a(en; Wy Un) + b(en; Unypr) = (G(en; Wh), Un)xrwx s YUh € Xa, (15)
b(Eh;U_;hmqh) = 07 V(Ih S th

where the non-linear term is defined as in (6). We are going to study the exis-
tence and uniqueness of discrete solution to (15) as we did for the continuous
problem, using a fixed-point approach. As a result, we study first the discretiza-
tion of (7) which is

Find (W, pn) € Xy, x My, such that
alens s Bh) + blens Bspn) = (Fdn) o ¥ eXn  (16)
Y
b(en; Wh,qn) =0, Vagn € My,
Note that (16) is again a saddle-point problem with a coercive bilinear form

a (see (8)) and we thus need a (discrete) inf-sup condition in order to get its
well-posedness. This is done in the next subsection.

3.1. Discrete inf-sup conditions

This section is devoted to prove that the bilinear forms b(e; -, -) and b(ep; -, -)
both satisfy inf-sup conditions. The latter together with the coercivity of the bi-
linear forms a(ey; -, ) and a(e; -, -) are necessary to prove that the linear discrete
problems (16), either with ¢ or &, are well-posed.

Lemma 6 (Discrete inf-sup with ¢). Assume that € is regqular enough so
that (14) holds and that at least one edge (d = 2) or a face (d = 3) of an

11



element of Ty, is contained in Touy (see [9, Assumption 3.1]). Then the follow-
ing inf-sup condition holds:

b
inf  sup ——2EUmG) g
qn € Mp\{0} apeXy ||uh||X||qhHLZ(Q)

S min {1, 28650 L — CLCRM (&) ey o)
76 =
max { (55 + 252 |Vzl oy )  1Ca |

where ¢, C1,Ca, C(Q) are generic positive constants and only p defined in (20)
depends on €.

PRrROOF. The proof is adapted from [7, p. 18, Proposition 3.7] and [9, Lemma
3.2]. Let g € My, be written as

Gh=0n+7, 7= /Qh
]

Since g, € L3(f), the continuous inf-sup condition from [19, p. 24, Corollary
2.4] gives the existence of v € Hi ()¢ such that

div(?) = —gp, and Hﬁ”x < C1 |[anl 2 (e - (17)

Since ¢ € R, we have

Vo e X, b(e;0,q) = —q/ ev - ndo.
r

out

Let ¢ € C°(Q2) be a smooth function with ¢(z) > 0 and let ¢g > 0 be given
by fr . pwdo = c¢g > 0. The Cauchy-Schwarz inequality together with the
continuity of the trace operator then give

/ eTx, (o) do > <0 / Ix, (9)do > coco — C(Q)eo |Tx, () — ollx
Fuut Fout
CoEo

2 9

Y

coco — O )h ||‘P||Wl+1 2(Q) >

where we used [17, p. 61, Corollary (1.110)] and we assumed that h is small
enough to get the two last lower bounds. From assumptions of Lemma 6, we

now consider a regular extension 7, of the unit normal vector 7|, inside Q2
and set
U = —qIx, (i) .
For h small enough, the previous estimate then gives that
= Co¢o
b(e;v,q) = 20 170y and [[7]x < C2 [l 2oy - (18)

12



Now setting

’ljh = Ixh (8_11:}:> + ,ui (19)
and using (17) and (18), we infer
b(eiin,qn) = b (6;6‘15, qh) +b (a;Ixh (6_15) -7y, C]h) + pb(e3 7, qn)

1= Co€o 2
> b(sZx, (719) ~ < Fan) + Il e + gy 1lzece)

= HC(®) (Co(1+ Vel o)) Nl oo 1Tl 2o

Y

where the last lower bound has been obtain thanks to Young inequality ab <
a?/(20) + b5 /2 applied with

0= Gl 2@y b= Nl 6 = CS) (Co(1 + Vel ) -

If we now chose i as

. . (20)

210 (C(@) (C2(1+ Vel s ) ))

we end up with
- 1= 1= HCHEQ
esiing) > b(Tx, (5715) ~ ) + 5 1l + St e
= = . 1 peoeq 2
> b (E;Ixh (5 1U) —¢€ 1U,Qh) +m1ﬂ{2’ 49|} ||qh||L2(Q)(21)

Using now [7, Proof of Proposition 3.7, (ii)] and assumptions (14), we have

b(c:3x, (=7) —<Foan)| < Ol ey [5]] Nanlzae
< Ol M HvHXthHLz(m
< CiChlellyce ) M (€) Gnll p2 () lanllr2(a)
< C1ChH€||W1,oo(Q)M(5) ||Qh||i2(§2)’

where we used (17) for the last upper bound. From (19), (17) and (18), we get

IN

[z (719) | + 1 [Fllx < € 71|, + 1o 1l ooy

masc{ (55" + 25 V2l oy ) +#Ca } llanll ey - (22)

I1nl1x

IN

The desired inf-sup condition is finally proved by gathering (22), (21) and (22).
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We emphasize that we are interested in solving the discrete problem (15)
which involve the discretization of €. Therefore, we extend Lemma 6 for the
bilinear form b(ey; -, -).

Lemma 7 (Discrete inf-sup with e5,). Let the assumptions of Lemma 6 be
satisfied. Then one has the following inf-sup condition

mf su Mzwh,e),

P 7=
an€Mp\{0} 7)€ X, ||“h||X||CIhHL2(Q)
C(Q) ||5||Wl+1,r(9)

max{<551 +eg? ||V€||L3(Q)) ’MCQ}

where B(h, €) is defined in Lemma 6, u in (20) and Cy > 0 is a generic constant.

Ba(h,e) = B(h,e) — Rt

PrOOF. We have that
b(en; Un, qn) = b(e; n, qn) + /Qdiv (e — en)iin) qn du.
From [7, p. 13; Lemma 3.1], we have the estimate
v € HY(Q), lI(e = en) @l g () < CR llellyrinriay 18y »
which gives
b(ens tn, qn) > b(e;tn, qn) — Ch' ||5||Wl+1,r(Q) ||ﬁh||x ||Qh||L2(Q)-

Using now ¢, as in the proof of Lemma 6, @, given by (19) and the estimate
(22), we obtain

L . |1 peoego 2
bensinoan) > (min{ 3, 50k = O = O el yionni ) anlco

and the desired inf-sup condition then follows from the estimate (22) on wp,.

We end this section by noting that both inf-sup constants satisfy S(h,e) >
B« (€) and Ba(h,e) > . (e) with

R min {2/, scoco}
819 max { (egl +eg? ||v5||L3(Q)) ,ucg} ’

v« (€)

if the mesh-size h is assumed to be small enough.

3.2. Convergence of the finite element method

We now have all the necessary tools to show that (wp,pn) satisfying (15)
converge toward (w,p) which is the solution to the variational formulation (5).
First we are going to prove that (15) has a unique solution under assumptions
similar to those giving the well-posedness of the continuous problem (5) (see
Theorem 5), namely for source terms that are small enough.

14



Theorem 8. Assume that (8) holds. Then one has an >0, a R > 0 and a
hmin > 0 such that if

|

x + HﬁiH||Héé2(r‘in)d < 7, h < hrnin,

there exists a unique (Wr,pn) € Xp X My, satisfying the weak formulation (15)
and the estimate

[ n | x + th||L2(Q) < R.

PROOF. We proceed as in the proof of Theorem 5 and we thus write (15) as
a fixed point equation on X, x My,. Owning to [19, p. 59, Theorem 4.1], the
coercivity of the bilinear form a (8) and Lemma 7, Problem (16) has a unique
solution. We introduce the operator Sy, : FeX v (W, pr) € X x My, where
(W, pr) is the unique solution to (16). Assuming h is small enough so that
Ba2(h,e) > 7.(€), we also have the bound

_ 1 1 a
R )
X/ ag V() Qo

The non-linear discrete problem (15) can then be written as the next fixed-point
equation

< Csh,

s
X xL2(£2)

(Wh,pn) = ShGn(Wh, pr) with G (Wh, pr) = G(ep; W),

where S$,Gp, : X5, x My, = X, x My,. Since the properties of G(g;-) : X — X’
proved in Lemma 4 are also valid for G(ep;-) : X; — X', the proof of the
present theorem can be done exactly as the proof of Theorem 5. In addition,
the smallness assumptions on the data and the definitions of Ry, Ry from (12)
and (13) are the same where the only change is that C's has to be replaced by
Cs,-

In the sequel, we prove optimal error estimate for the finite element approx-
imation of the linear and non-linear problems (5) and (7), respectively.

Convergence estimate for the linear problem

We consider here the linear problem (7) whose finite element discretization
is (16) when the given porosity is also discretized. We emphasize that Problem
(16) falls into the class of discrete saddle-point problem such as those studied
in [12, p. 65, I1.2.6]. The existence and uniqueness of (@, py) satisfying (16) is
ensured by the inf-sup condition from Lemma 7 and the coercivity and continuity
of the bilinear form ay, (see (8)). We also have the following convergence result.

Theorem 9. Assume that « :)0,1] — RT is Lipschitz continuous. Let (0, p) be
the unique solution to (7). Assume that h is small enough so that the inf-sup
condition from Lemma 7 holds uniformly in h and let (Wy,pr) be the unique
solution to (16). We then have

I @+ lon = pliney < C([ing 19t inf, o= anl e

T)h €Xp

+ Omax{”eh - e||Loc(Q) e = 5hHW1m(Q)} :

15



PRrROOF. We apply [12, p. 67, Proposition 2.16] to get

I — @l + ph—pnwmw( nf ([ — Gy + inf ||p—qh||m<m)
h qnEMy,

vpeX
4+ sup \a(é‘ﬂﬁaﬁh): a(en; W, Up)| + sup |b(€;77h,,p):b(5h,;17h,,P)|
neXn, (o 1B TheX, 19 llx
b(e;w — b(ep;w
+ sup |b(e; W, qn) — b( h,W,Qh)\_
qn €My, HQhHL2(Q)

Note that
a(e;w,0) — a(ep; W, V) = / 2Re ™! (e — 1) S(0):S(¥) + (ale) — alen)) @ - ¥ d,
Q

bei ) — bleni .0) = [ adiv ((en - £)) da.
Q
The error estimate then follows easily thanks to the Lipschitz continuity of
5 €]0,1] — a(s) € RT and the Holder inequality.

If e € Who(Q) N WHLT(Q) for some | > 0 then (14) hold. Assuming also
that the solution (), p) to (7) are in H*+1(Q)4 x H*(2) then the error estimate
from Theorem 9 reads

[ @ = x + [P = Pll2@) < CR° (Hw||Hs+1(ﬂ) + HPHHS(Q))
+ Cmax {h el (a) N ||5||Wl+1’T(Q)} J

where we used [17, p. 61, Corollary 1.110] to get the dependence of the inf with
respect to the meshsize.

Let us now consider @ = @ + V where V is the divergence-free lifting of
the inhomogeneous Dirichlet boundary condition introduced in Lemma 16. It
is worth noting that (@, p) satisfy the linear DBF problem with inhomogeneous
Dirichlet boundary condition on I';,. The finite element discretization of 4 is
then ), = Wy, + Ixhv and one has the error estimate

I =l + Ipn = Pl < OB (18l ey + IPlirecey) + |7 = Zxa V|
+ Cmax {h ||€||W1,oo(9) Rt ||5||Wl+1w(9)} :

The discrete non-linear problem without using a discrete porosity

We consider now the discrete problem associated to (5) where the porosity
is not discretized. The latter is very similar to (15) and reads

Find (0, pn) € Xp x My, such that

{ a(E;’th,l_}'h) + b(E;’Uh,ph) = <G(E;wh)’ﬁh>x’><x7 Yy, € X, (23)
b(€, whv qh) = 07 VC]h S Mh-

16



We emphasize that the existence and uniqueness of solution to (23) can be
proved with arguments similar to those used to get Theorem 8. We are now
going to compute the effective order of convergence of (wy,pp) toward (w,p)
which satisfy (5). This can be done using the results from [10] (see also [22, p.
14, Section 4.2], [23] and [9, Theorem 4.3]) and relies on several properties that
we check below.

We recall that (5) is equivalent to

0 = F(, p) :=(w,p) — SG(wW, p) with G(w,p) = G(e; W),

where S : F € X' — (w,p) € X x L2(Q) is the unique solution of (7). Now,
let S, : F € X' (W, pn) € Xp x My, be the operator associated to any
right-hand side F' the solution to the following linear discrete problem
Find (Wh, pn) € Xy, x My, such that
a(e; Wn, Un) + b(e; Uh, pp) = <ﬁ,17h>x 0 o € Xp, (24)
%
b(ff?U_;mCIh) = 0) VQh S Mh.

Then (23) is equivalent to the non-linear equation
0 = Fp(@n, pp) =W, pn) — SuG(Wn, pp) with G(@n, pp) = G(e;wp).  (25)

Since (24) is a linear saddle-point problem where the bilinear form a is coercive
and continuous (see (8)) and the bilinear form b satisfy an inf-sup condition (see
Lemma 6), we can apply [12, p. 54, Proposition 2.4] and get that the operator
Sy, verifies

[547 ]y = € [Pl (26
X x L2(Q) X’

509 Fly < 2, 7= )

(Tn,qn) €EXp xMp XxL2(Q)

We emphasize that, for h small enough to ensure that S(h,e) > ~.(g), the
constant C in (26) does not depend on h but it may depends on €. From (26)
and the density of smooth function in X x L?(2), we obtain

o H(Sh -9 ﬁHme(Q) =0 27

We prove below that the differential Dz (w,p) of F at (@, p) is an isomor-
phism of X x L2(2).

Lemma 10. Let (w,p) € X x L*(Q) be the solution to F(w,p) = 0 satisfying
0] x + |Ipllp2() < R where R < min{Ro, R1} (see (12) and (13)) can be as
small as we wish. Then there exists n > 0 such that if

14+ 1l 2 e <
then Dz(w,p) : X x L?(2) — X x L2(Q) is an isomorphism with bounded

muverse.
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PROOF. A computation gives

We recall that G(W, p) = G(e; W) where the non-linear term G(g;-) is defined in
(6). Then

(Dg (i, p) (6, 0], T x = —/Qa((mx?)-v) 5 - T da
-

To study the inverse of the operator [, dp] — Dx (W, p)[0wW, dp], we consider
the equation D z(W, p)[6w, dp] = F which is equivalent to the linear saddle-point
problem

Find (6w, 6p) € X x L3(Q) such that V v € X, q € L*(Q) :
a(e; 0w, U) — (Dg (W, p)[0W, 0p], V)% x + b(e; U, 0p) <
b(e;0w,q) =0.

>X’><X’

(29)
Theorem 5 and Lemma 16 give that (&, p) € X x L2(Q) and V satisfy the next
estimate

[@llx + Pl L20) < R,

7], <3O

with R < min{Ry, R} where Ry and R; are respectively defined in (12) and
(13). As a result, there exists a constant C' > 0 such that
(D, p) (5,37, 6 x| < O (Il + il gz e o) 161

Since R can be as small as we want, there exists 7 > 0 such that if |||y +
”ﬁin”H(}({?(Fm)d <17, then
[(Dg (i, p) (6, 6p], 6) x| < Re™eo [0 -
Using now (8), we obtain that the bilinear form
A(6W, 0) := ale; 0w, ) — (Dg (W, p)[010, 5p], U)x /1, x »

is coercive and continuous on X x X. Lemma 2 gives that b(¢; -, -) satisfies an
inf-sup condition and [12, II.1, Proposition 1.3] then show that (29) is well-posed
and the solutions satisfy a bound similar to those of Theorem 3. This proves
that Dr(w,p) : X x L*(Q) — X x L?*(Q) is an isomorphism with bounded
inverse.

18



We now show the properties needed to apply the results from [10].

Theorem 11. Assume that (3) holds and the solution (1, p) to (5) is in H*+1(Q)?x
H*(Q2). Assume also that h is small enough so that Sy, is well-defined. Then we
have the following properties

(i) The next error estimate is valid

<Cw’

H(Sh - 95) ﬁ‘ XxL2(Q)

SFH

Hs+1(Q)dx Hs (Q)
(i) There exists a constant C(w,p) > 0 that does not depend on h so that
||]:h(wap)||X><L2(Q) < C(w, p)h*

(i1i) There exists n > 0 such that if||1D'||X+||ﬁinHH1/z(F ya <, then Dr, (W, p)
00 (Tin
is an isomorphism of X x L*(Q) and the norm of its inverse is bounded
independently of h.

(iv) There exists a neighborhood U of (W, p) € X x L*(Q) and a constant L > 0
such that

V(¥,q) €U, | Dr, (@, p) = DF,, (0,0l xx22(0)) < L IN& = 0,0 = @)l x L2(0) -

PRrOOF. The proof of (i) follows from (26), the regularity of (w,p) and [17, p
61, Corollary 1.110]. To get (ii), we note that F(u,p) = 0. Using then (25), we
obtain that

Fn(W,p) = Fn(w,p) — F(&,p) = (Sn — &) G(&, p).

Lemma 4 and (¢) then prove (i7). Regarding (7i¢), the invertibility of Dz, (W, p)
can be obtained as in the proof of Lemma 10. The fact that the inverse of
Dz, (W,p) has a norm that does not depend on h follows from the fact that
the coercivity constant of a(e;-, ) and the inf-sup constant of b(e; -, -) does not
depend on the mesh-size if h is small enough.

We now prove (iv). The differential Dz, (@, p) of Fp, at (@, p) is given by

Dz, (W, p)[0w, 6p| = (6w, 6p) — SpDg (W, p) [0, dp],

where Dg (w0, p) is defined in (28). From (26), we only have to study the local
Lipschitz property of the application (¥, q) — Dg (¥, ¢). Using (28), one can see
that the three first terms appearing in Dg(¥,q) are locally Lipschitz. It only
remains to prove a that the next application ¥ : (7, q) € X x L?(Q) — ¥(7,q) €
X' defined for all @ € X by

. T+V e oy o
(W(v,9), U)x/xx = /5 — 0w o (04 V) - 1) da,
v+ V‘
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is Lipschitz in a neighborhood of (), p) satisfying JF(w, p) = 0.
We start by the case where (W, p) = (=V,p). It is worth noting that

19, Dl < 181l ey [+ V| 19

—

and thus ¥(—V,p) = 0. This shows that

|2@.q) - w(=7V.p) 7 (V)

< o 0|
xr = 18l Q) x [6]|x

and thus the application (¥,q) — ¥(¥,q) is Lipschitz in a neighborhood of
(@,p) = (=V,p)-

The application (¥,q) — U(¥,¢) is smooth on (X \ {—‘7}) x L2(2). The dif-
ferential of W for all W # —V is:

(Do (@, D)0 xix = — [ BE) e -85 b (64 V) - 7) da
o @+
e BV e\ i 6 e
o G4V
[ s {w@+7 o0} (@+7)-9 [ L
Q "lﬁ+

This yields
| Dw (w0, p)[64]||x, < 3 ||6||L°C(Q) [[69]|x (164 x ,

and a Taylor expansion finally shows that (¥, q) — ¥(¥,q) is also locally Lips-
chitz in a neighborhood of (i, p) satisfying F (i, p) = 0 if @ # —V.

Thanks to Lemma 10 and Theorem 11, we can use [19, p. 302, Theorem 3.1]
(see also [10], [22, p. 14, Section 4.2], [23]) to get the following error estimate.

Theorem 12. Let the assumptions of Lemmas 6 and 10 and of Theorem 11 be
valid. Then there exists a constant C(W,p) > 0 such that

[din — @l x + lpn = Pll2(q) < C(@, p)h°.

In addition, if (i, p) denotes the solution to (4) then its finite element approxi-
mation (U, pr) satisfies the error estimate

I = il x + [n = Pll 2oy < Ch*CGa,p) + ||V = T, V| -

Theorem 12 gives optimal error estimate. Note nevertheless that the O(h®)
can be deteriorated if the divergence-free lifting V' is not regular enough.
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The non-linear problem using a discrete porosity

We prove here some error estimates for the finite element approximation of
(W, p) which satisfies (5). To ease the presentation, we introduce some notations.
The solution to (5) is denoted by ®(e) = (wW(e), p(€)), Pr(en) = (Wr(en), prlen))
satisfy the discrete problem (15) so that ®,(¢) = (W (g),pn(g)) is the solution
to the non-linear discrete problem (23). We now write

<I>(e) - ‘bh(sh) = ((I)(&‘) - CI)}L(E)) + ((I)h(e’:‘) — (bh(fh)) = F, + Es.
It is worth noting that Theorem 12 can be used to bound F; and yields
1B xx£20) = @ = @llx + IPh = pll2(q) < C(@, p)R°. (30)

Regarding the second error term Fj, we recall that ®,(g) is a solution to
H(e, ®p) = 0 where

H(e, ®n) = L(g3Wn, pr) — G(&; Wh, pn) with G(e;w, p) = (G(e;wn),0).
Above, L(g;-,-) : (W, pr) € X x My, — X' x L%(Q) is the operator associated
to (24) defined by

(L(e;4,p), (U, q)) = (ale; W, ¥) + b(e; U, p), b(e; 0, q)).

We are now in position to study the regularity of the mapping € — ®5(¢) and
get a bound on Fs.

Theorem 13. Let (3) and the assumptions under which Problem (23) has a
unique solution be valid (see Theorem 8). Then there exists hg such that if
h < hg, we have the next estimate

||E2||X><L2(Q) <Cle- 5hHL°°(Q)ﬂW1vT(Q) )
where C' > 0 does not depend on h.
PROOF. Let Y = L>(Q) N W17 (Q) and
U={ee€Y|eg <e(z)<1, Vee}.

For any ¢ € U and if F and Ui, have small enough norms, we have the existence
and uniqueness of ®;, € X; x My, satisfying H(e, @) = 0 together with the
estimate

1Prllx, xm, <R

where R > 0 does not depend on h since the coercivity and inf-sup constants
does not depend on the mesh-size for h small enough. We also note that R can
be as small as wanted. Using similar techniques as those from the demonstration
of Lemma 10, one can show that §® — Dy (g, ®,)[0, 9] is an isomorphism (this
actually amount to solve a discrete version of (29)). We emphasize that this
application is also an isomorphism even if @}, is not a solution to H (e, ®5) = 0, as
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soon as || ®nx 120 »

’ﬁ” and || @in| ;12,5 1« are small enough. In addition,
X Hyo™ (Tin)

since the coercivity and inf-sup constants does not depend on the mesh-size the
norm of the inverse of the application 0® — Dy (g, ®3)[0,dP] is bounded with
a constant independent of h.

We now apply the implicit function theorem around some fixed € € U to
the application H : Y x (Xp, x My,) — X' x L?(Q) which is continuous Fréchet
differentiable. This yields two neighborhoods © C U C Y of € and V), C
X x My, of ®,(e) such that the application e € O — ®p(e) € V), is Fréchet
differentiable and that

V(e,®) € O x Vy, H(e, Pp(e)) = 0. (31)

We also have some § > 0 such that the ball centered at ®p(e) of radius ¢ is
included into V},. This yields

Ve € O, ||[®4(e)]] <6+ R. (32)
Differentiating (31) with respect to & gives
Di(e, @ (e)) [0, Da, (¢)[0e]] = = Da(e, ®n(e))[d¢, 0].

A direct calculation gives that
(Dy (e, ®)[0¢,0], (T,q)) = (2Re™! / 5eS(10):S(v) + o/ (e)(de)ii - Tdx
Q
- / pdiv(0e?) dx

0
+ de(d- V) -0+ B'(e)(de)|d|v - W dx
Q

, —/ qdiv(de®) dx),
Q
where ® = (4, p). From the Holder inequality, we obtain
[1D3(e, @)[ Ol £y xr x £2(0)) < CmaX{HO/(E)HLw(Q) ; Hﬁ/(E)HLN(Q)} [Pl xx£2(0) »
where C' > 0 only depend on Q. From (32), we can take §, R > 0 small enough

so that d® — Dy (e, ®,)[0,09] is an isomorphism. It is worth noting that its
inverse is bounded independently of h. This yields

IN

sup || Dg,, (E)HL(Y,xthh) C'sup || Dy(e, ®)[, 0] HL(Y,x/xLZ(Q))
e€cO e€O

€ sup (max {0/ (@) g 18/ }) -

IN

Owning to (14) we can chose hg such that [le — ep| . )p1.-(q) IS small enough
so that e, € O for any h < hg. Since both functions s € [gg, 1] = /(s) € RT
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and s € [eg, 1] — B'(s) € RT are bounded, one gets

[®n(e) — ‘I’h(Eh)”xxL?(Q) < Slelg HD%(’Y)”L(Y,xthh) lle — sh”LOO(Q)mWLT(Q)
Y
< Clle = enllpe@yamwrro) »

and we have finally proved the desired result.

Assuming that (w,p) € H*TH(Q)? x H*(Q) and using Theorem (13) and
(30), we have proved that there exist 7 > 0, R > 0 and hg such that if h < hg
and

7]+ Wl a2 o < m and [l + 1ol 20 < B

then

I = dlx + lon = Pllizey < C@.pIR* + [V = Ix, V|
+ Cle—enllpe@ynwrr ) (33)

where (i, p) satisfies (4) and (@, pn) = (@ +Ix, V, pn) satisfies (15). We have
then proved optimal error estimates for the finite element approximation using
a discretization of the porosity of the solution to the DBF model with mixed
boundary conditions.

4. Numerical analysis of the DBF model

In this section, we present some numerical results related to the DBF model.
First, we present the method used to solve the non-linear discrete problem. The
latter relies on a fixed-point method also known as Picard iteration and we are
going to prove its convergence. We consider next a smoothly varying porosity,
such as those appearing in packed beds (see e.g. [46, 1, 41]), to illustrate the
convergence properties of the finite element method.

4.1. Picard-like iteration for solving the non-linear discrete problem

We introduce the following finite element space
X17h = {ﬁh S X1 | VK € 77,, 17h‘K S PQ(K)}.
We recall that the non-linear discrete problem can be written as

Find (4, pr) € X1, X My, such that forall (Up,pp) € Xp x My,

ﬁhh"m = ﬁin and

{ a(e; Un, Un) + 0c(e; Un, Un, Up) + b(e; Un, pn) = <ﬁ7 ﬁh>X’><X’
b(e;un,qn) =0,

(34)

where one could use either ¢ or the finite element interpolant of the porosity,
namely taking e = &5, in (34) and § € {0, 1} allows to go from the linear (§ = 0)
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to the non-linear problem (§ = 1). The Picard-like iteration used to solve (34)
with 6 = 1 is obtained by computing, for some n, (@ n, Ph,n) € X1,5 X My, such
that ﬁh,nh‘m = ﬁin and
V(ffh,ph) € X, x My,
a(&; Un,n, Un) + (€5 Unn—1, Unn, Un) + b(&; Uny Prn) = <F, Hh> ;
X’'xX
0

b(f‘:?ﬁh,mQh) =
(35)
We now assume there is no volumic right hand side to lighten the overall expres-
sions, that is F=0. We study below the convergence of the iterative method
(35) in this setting.

Theorem 14. We consider € = €, in (35). Assume that
()l ey = ORe™), IAE) ] 1oy = O,

where the O(.) are used to highlight the dependance with respect to Re™'. Then
there exists a generic constant Coy > 0 that may depend on € such that if

”ﬁin”Hééz(Fm)d < C'(j‘\/1{6*17

then the sequence (U, n,DPh.n) generated by (35) converges toward the solution
to (34) in the strong topology of X x L*(Q).

PRrOOF. Note first that (ip,1,pp,1) = (W1 +Ix11h‘7,ph,1) where (Wh,1,pn,1) €
X}, x My, satisfies (16) with the next right hand side

<F,17h> = —a(@;IthV,ﬁh).
X' xX

Using [12, II.1, Proposition 1.3], we get that (@ 1,pn,1) exists uniquely and
satisfies

. L (1 Lol
Il < ot [V Ionallieey < 5oy (1 lall [

from which we infer

_ [lal [lal _
ltn,1]lx < < o 1 HVH . + 1) M(e) (|l a2, ya -

If we now assume that ||tin|| ,;1/2, 4 1S small enough so that
Hyb"(Tin)

N Re e
Huh,nlex < 12 0’» (36)
NL

then the bilinear form a(e; -, -) + ¢(€; Up,n-1,, ) is coercive with coercivity con-
stant Re " ley. As a result, (Ghns Phon) € X X My, is well-defined and satisfies

llall + Cnv [|thn—1llx || o
: 1%
”wh,n”X > Re_lgo <’
1 ||Cl|| +CNL ||ﬁh n—lHX —
n < 1 ? C — o HVH
lPhnll 20y < Bz(h,e)( + Re o, (llall + O 1.0l || 7|
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Since (@pn,Phn) = (u’)’h’n —|—Ix1yhyV,ph’n> and c(e;Up p—1,-,-) is bilinear, we

i — ” || C ” — ”X 1 V‘ 37

a NL [|Uh,n—1
' = e 50, H H '

||u;, ”x ( R 1 > < ( )

Now setting ((I’h,n; 7"'h,n) = (ﬁh,n_ﬁh,n—laph,n_ph,n—l)a we get that (q)h,na 7Th,n) S
X}, x My, satisfies the following discrete linear saddle-point problem

{ a(e; 5h,n,17h) + (&5 Tnn1, P, Tn) + b(E; Thy Thp) = <én, Uh
b(e; Bpnyqn) =0,

with én € X’ defined for all ¥ € X as follow
<Gna 6> = C(E; ﬁh,n—Za ﬂ‘h,n—la U) - C(&; ﬂ‘h,n—la ﬁh,n—la 17)
X’'xX

From (36), we know that (38) is well-posed and that ((fh,n, Th,n) satisfies

—

1
Ppnllx < =——
|| h, HX Re 1o

n )

lall + O [[@h,n—111x
all ey < 1 :
Inll @) < Ba(h, ) ( " Re ‘g

A computation gives

b

G

x

sup
lvllx=1

(o) | = OO mx {1150} 1 et
where C'(€2) is a generic constant. We can thus finally infer that

1 ~
[0l < OO ey max {1186 e } Wl [

L, lall+ il
n <C(Q 1 : 39
ey < OO gy (14 1Sl (39

xmax {1,18()l| =g } 1@nn1llx nn-1llx -

The O(.) below are used to highlight the dependance of some parameters
with respect to Re™!. Note that [ja|| = C% ()l poe ) + 2Re™! = O(Re™)
and ag = 2Re ™ 'gq (see (8)) and that Cnr, = C(Q) max(1, 1B o () = O(1).

As a result, one has that |[a| /ag = O(1) and if ||t | ,1/2 ) < CovRe ! with
00

(Tin
(670110
Cov < ,
V= CnnM () (ao + Jal])

then (36) is satisfied by @}, 1. Now, if we assume that

1 Qp€g
Cov < — ,
eV = 2 CNLM(5>(OZO + ||a||)

(40)
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we get from (37) that |lups|lx < Re 'eo/Cni hence it satisfies (36) and by

induction the whole sequence is determined and satisfies (36) for any n € N*.
Now combining (37) with (39) give

1
[®rnllx < C(Q)ﬁ max{l, ||3(5)||Loo(sz)} (
XM(E) ”ﬁinHHééz(pm)d ”(bh,nlex

M(e)Re™!

C T
ol + O [unrh ;)
Re™ "¢g

[lall

< 2CcvC(Q) max{la Hﬁ(E)HLw(Q)} <ao +1> 1®n,n—1llx -

As a result, if in addition to (40), we have

QCCVO(Q)%:“)maX{L ||ﬁ(e)||Lm(Q)} (”aao + 1) <1, (41)

then the sequence (ih ), en- C X is a Cauchy sequence and therefore converges
toward some i, € X;. We actually have 4, € X since for all n € N*
(@hn)pens C X1h-

To get the convergence for the pressures (pp n)nen+, we note that (39) and (36)
give the next bound

Re ‘e a
Il < OO s (2 o ) {L 1B o 10801 -
(42)
Since ((I)ha")neN* is a sequence that converges to 0 in X, we infer that there
exists ng € N such that for all n > ng, one has ||7rh$n|\L2(Q) < 1/2 and thus the

sequence (ph,n), ey C My is a Cauchy sequence. This gives the existence of
some py, € My, such that (phvn)nGN* converges toward pp. It now only remains
to pass to the limit as n — 400 to get that (un,pn) € X1 n X M), converges
toward the solution to (34).

Remark 15. If e is used then 5(h,e) appears in the bounds where the pressure
is involved (see (39) and (42)).
We emphasize that the constant Covy satisfy (40,41) which reduce to

Qp€o . 1 1

(Tl +a0) ™| ExtME)” 000 (o) max {1,186 1~y )

Ccv<2

where C(2) only depends on the geometry of the domain. It is also worth noting
that the proof of Theorem 14 can be used to prove the existence of solution to
the continuous and discrete problems (4), (34) for F =0 and a(e) = O(Re™})
as soon as h is small enough to ensure that B3(h,e) > 0. Nevertheless, we found
that it was easier to rely on (25) sine it fits in the framework of [19, p. 302,
Theorem 8.1] (see also [10], [22, p. 14, Section 4.2], [23]) and thus allow to
prove optimal error estimates for the finite element method.
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One can also compute the speed of convergence of the fized-point iteration
(85). Let us assume that Ccy is given as above and that Coy < g < 1. Since
[Phnllx < ql|Prn-1lx, we have

n—1

1—¢

[, — ]l x < [@h,1 = tnal x
where 1y, satisfy (84). In addition, we can prove by induction that ||®p 1] x <
q" 2| ®h 2|l and (42) thus gives

Re™ <o ol 2
< n
1Thnll 20y < C(Q>CNL62(h75) (2 + Re~leg max {17 Hﬁ<5>||L°°(Q)}q [

Note that the fixed-point iteration defined in (35) is well-defined if ;, have
a small enough norm. We also emphasize that, under these assumptions, this
method is globally convergent. It is worth noting that the method may not
converge otherwise and that the upper bound above which the method diverges
also depends on the Reynolds number. As a result, divergence may occurs if
Re or ||| HY?(rye AX€ 100 large. Nevertheless note that, for any Reynolds

number, one can find some u;, for which (35) actually converges and conversely,
for any u;,, we have a Rey such that for any Re < Rey the method converges.
We illustrate this behavior in our numerical experiments.

4.2. Numerical experiments
For this test case, we choose the following smooth porosity

1-0.45

=045(1
e(z,y) =0 5( T

exp(~(1-1))

and recall that this can be obtained when considering packed beds such as those
studied in [46, 1]. The Darcy and Forchheimer terms are defined in [30, p. 3,
Eq (8,9)] (see also [46]) and read

a(e)ﬁ(lj)z, 5(5)1.75<1;5). (43)

It is easy to see that they satisfy all the assumptions (3). We set Q = (0,2) x
(0,1), Ty, = {0} x [0,1], Tout = {2} x [0,1] and T, = [0,2] x ({0} U {1}). For
the inlet velocity, we take the parabolic profile

Uin (y) = ciny(1 — y)éx,

where ¢, is a constant which is going to be tuned in order for Hﬁi“”Héf(F;n)Q to
be small enough to ensure that the discrete problem has a unique solution and
also that (35) converges.

All the following numerical computations are done with FreeFem ++ [24].
We use the LU solver to solve the linear problems (35) which needs every sub-
matrices to be invertible. We thus add the term ~yp in the incompressibility
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Value of ¢ for tol=1e-5 e Value of c for tol=1e-10

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000
Reynolds number Reynolds number

Figure 1: Value of ciy min With itmax = 10. Top: N = 40, Bottom: N = 120, Left row:
tol = 1le — 5, Right row: tol = le — 10.

condition with v = le — 07. We also used a P; finite element approximation
of e, that is € defined as the finite element interpolate of the porosity. We
also emphasize that all the convergence theorems proved in the previous section
apply to the considered test case. Finally, the mesh is obtained thanks to the
Freefem command buildmesh (a(N) 4+ b(N) + ¢(N) + d(N)) with N being the
number of vertices on each part of the boundary denoted by a,b,c,d. As a
result, the mesh-size h is

and we can consider only N in our numerical simulations.

To set the constant c;,, we are going to compute the error between the last
two iterates of (35) after ityayx iterations have been performed. This amount to
compute the following quantity

err(Re, itmax) = max { ||ph77f.tn]ax — Phjitmax—1 ||L2 Q) ||ﬁh’itmax - ﬁhfitmax71 ||L2(Q)2} :
We now want to find numerically ¢in min such that
Ve > Cinmin, €rT(Re, itmax) > tol,

for a given ityax and tolerance. Since the fixed point iteration (35) converges
if 4, has small enough norm, finding such c¢ip min is useful to setup the param-
eters of our numerical experiments, namely the Reynolds number and the inlet
velocity.

In Figure 1 are shown values of ¢inmin for itmax = 10, N = 40,120 and
tol = le — 5,1e — 10 for several values of the Reynolds number. We used a
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discrete porosity defined as the IP; finite element interpolation of €. For all
cases considered, the value of cinmin behaves like C' x Re~!. We emphasize
that this is in agreement with Theorem 14 which shows that one needs to have
||ﬁin||H;g2(ri,,)z < Ccv/Re for the fixed point iteration to converge. It is also

worth noting that, if one keeps the same number of iterations while diminishing
the tolerance, then one gets a value of iy min that is greatly reduced. This is
actually expected from the theoretical speed of convergence of the iteration (35)
computed in Remark 15 since a smaller value for ¢;, means a smaller value for
Ccvy which is directly linked to the speed of convergence. Note also that the
value of iy min slightly depends on the mesh-size. This is again expected from
Remark 15 since the speed of convergence of the pressure depend on the discrete
inf-sup constant Ba(h,e) which depends on h.

We now give some illustrations of the convergence order of the finite element
approximation toward the continuous solution. We first discuss the regularity
of the weak solution to the Darcy-Brinkman-Forchheimer problem. Since ¢ is
smooth and bounded over 2, any solution to (1) also satisfies a Stokes problem

—

—2Re”!div(S(@)) + Vp F, in 0
div(@d) = —e7'Ve-4, inQQ,

(44)

with
F=—cla(e)i—e'B(e)d]i| — (@- V)i — 2Re Le ' S(@) Ve.

Regarding the boundary condition on I'y,t, one can prove as in the demonstra-
tion of Lemma 16 that y € Héf(l“out) —ep € Héf(l“out) is a continuous linear
mapping with inverse mapping given by p € Héf(l"out) el e Hééz(l"out).
The boundary condition on I'oyt thus reduces to (2Re_15’(6) —p) 7 = 0 in
Héé 2(Fout)’ which corresponds to a traction boundary condition on I'gy;. As a
result, any weak solution to (1) satisfies a Stokes problem with mixed boundary
conditions, a right hand side F and inhomogeneous divergence div(@) € L2(£2).
Since @, = ciny(l — y) is smooth with @i,|or,, = 0, it is actually at least in
HYY 12 (Tin). The results from [28] (see also [29]) then ensure that any weak
solution (#,p) to (1) is at least in H3(2)? x H?(Q2). The convergence Theorem
12 (see also (33)) then gives

Errioe = |lin — llx + [|pn — PHL2(Q)

< CRCW,p) + ||V =T, V| +Clle = enll e @pwnrion -

This error estimate is optimal when no finite element approximation of the
porosity is used. Since we do not have explicit solution, we note (@ex, pex) the
solution obtained with N = 200 and we compute the error between the discrete
solution for N < 100 and (@ex, Pex)-

The errors are shown in Figures 2 for (Re, ¢;,) = (500, 0.5) and in Figure 3 for
(Re, cin) = (1000, 1). The optimal order of convergence, namely Erry,; = O(h?),
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Re=500and ¢, =0.5 Re=500 and ¢, =0.5

k. HY error L2 error of the velocity
R = =Aline with slope -2 = =Aline with slope -2

10 > 105~

error
/)

error
/

10°° I~ 10 ~

10® 107
10t 10% 10* 10%

Figure 2: (Re, cin) = (500,0.5): (Left) Erriot, (Right) L? error for the velocity.

Re=1000and ¢; =1 Re=1000 and ¢; =1
10°

HY error L2 error of the velocity
= _=Aline with slope -2 = _=Aline with slope -2

10°

error
error

5 T -s=
10 ~——
E.
-

-
- -
-
-

Figure 3: (Re, cin) = (1000, 1): (Left) Errior, (Right) L? error for the velocity.

is obtained. Since we used an approximate porosity €, € My, the convergence
order is actually expected to be smaller. Nevertheless, the smoothness of € en-
sures that |le — en |l poc (o) = O(h?) 'and that ||e - 8h||W},r(Q) = O(h). We. could
therefore conclude that the theoretical error estimates involving the gradient of
(en, — €) is not optimal and that only the L° norm of (¢ — ¢) should appear
in Errie. It is worth noting that this could be achieved by considering the
bilinear form b(e; 4, q) = fQ eVp - @ dx instead of b(e;+,-) which is well-defined
as p € H(Q). Note also that the Reynolds number does not have a significant
effect on the total error. Regarding the L? error of the velocity, one could have
expected one extra order of convergence as in the case of Stokes flow (see e.g.
[17, p. 185, Proposition 4.18]) or elliptic problems. Note nevertheless that the
convergence order in the L?-norm is the same as the one of the total error.
Once again, we have [ — ep|[ () = O(h?) which may cause the L? error to
be second order accurate even if P; element to approximate the velocity. This
claim is confirmed by Figure 4 which shows the L?-error for the velocity where
en € Py instead of ¢, € Py as in Figures 2, 3. Indeed, in that case, we have
le —enll @) = O(h3) and one can see that the L2-norm of the velocity now

behaves like O(h?®) hence recovering the optimal convergence rate.

5. Conclusions and outlook

We proved the well-posedness of the DBF model with mixed boundary con-
ditions as well as the convergence of the Taylor-Hood finite element method
when using a discrete porosity. We also provided a fixed point iteration, and
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€, € P2 + Re=500 cin=0.5

L2 error of the velocity
= =Aline with slope -3

error

€, € P2 + Re=1000 cin=1

L2 error of the velocity
= =Aline with slope -3

Figure 4: L2 error for the velocity using e, € Pa. (Left): (Re,cin) = (500,0.5), (Right):
(Re, cin) = (1000, 1).

proved its convergence, to solve the discrete non-linear problem and gave some
numerical experiments to illustrate the optimal error estimates obtained theo-
retically. We emphasize that all our results hold for small enough source terms
and that we showed numerically how small these terms have to be. It is also
worth noting that all our results extend without any change to the incompress-
ible Navier-Stokes equation since the latter is obtained from the DBF model
when e(z) = 1 over the domain.

Regarding the perspectives, it could be interesting to try first to extend the
results of this paper to the DBF problem involving the generalized Forchheimer
term, namely «|@]® for 1 < s < 2 (see e.g. [13, 47]). Secondly, it may be
very interesting to study the problem of finding some optimal porous media
minimizing a given cost function. Such problem falls into the class of PDE-
constrained optimization problems such as those studied in [4, 5] and involve
the DBF model as constraint equation. Some theoretical questions like for
instance the existence of optimal porosity or the convergence of discrete optimal
porosity toward the optimal continuous ones are central when working on such
problems and the results proved in this paper will be of great help to provide
some answers.

Appendix A. Divergence-free lifting

We provide here the existence of a divergence-free lifting of the inhomoge-
neous Dirichlet boundary condition.

Lemma 16. For any Uy, € H&éQ(I‘in)d, there exists a vector field V solution of

div (a?) -0 O
vV = Ui, on Iy,
V =0 on I'y,

which satisfies
7], = 22) Il s,y

where M(e) = C {651 +eot HV5||L3(Q)}'
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PROOF. Let @ be defined as follows

—1-=

€ Uy on Iy,
0 on Iy,
Aout  ON Foutv

= L 1 — -
Aout = (—/ e " Uip - nda) Uout
Tin

with @y € Héé 2(I‘out)d being a given function such that

/ ﬁout -fido = 1.
Fout

Note that, since i, € Hééz(I‘in)d, one has Ey (i) € H'/?(0Q)¢ and thus there
exists @y, € H'(Q)? such that ®i,|pn = Eo(ii,). Since e1®;, € HY(Q)4,
e~ 1®;, € HY2(0Q)? and then e~ 1@y, |, = e~ M, € H'Y/?(I';y)%. Note that

[AmE
r,. dist(s,0Tsy) ’

QL
I

where

since i, € Hééz(Fin)d and ¢ € L>°(Q) and we obtain ¢4, € Héf (Tin)4.
Since dout € H(%Q(l"out)d, we have some éout € H'(Q)? such that <130ut\ag =
Ey(tous). Now setting d = Doy + iy € H'(Q)?, we have that 5\39 = d and
thus @ € H'/2(0Q)?. Since
a-ndo =0,

20
we can use [18, p. 176, Exercise III 3.5] (2 needs to be bounded and locally
Lipschitz) to get the existence of U € H'(2) that satisfies

div() = 0inQ
2, ’ Al
{ U = don 09, (A1)
together with the bound

HUHHl(Q)d < C @l 2oy < C Wil gy e

From [7, p. 3, Lemma 2.1], the application @ € H'(Q)? — e € H' ()% is an
isomorphism. Therefore, there exists V' € X such that U=¢eV and

cm@ﬁ - 0 in Q,
‘7 ﬁin on Fim (AQ)
V =0 on 'y,
vV = anut on Fout-
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A computation also gives the bound (see also [41, p. 3, Theorem 2]):

—

(@)1 H - _’HHl(Q)d = {551 e’ ”VEHLS(Q)} HUH

C{eg + e Vel g | Il g oy e -

H(Q)d

IN

The proof is then finished thanks to Korn inequality.

Appendix B. Regularity of the boundary stress tensor

We give here a result about the regularity of the boundary stress tensor that
justify the equivalence between (1,2) and its weak formulation (4). Such result
can also be used when considering inhomogeneous traction boundary conditions
such as

e (2Re™'S(0) — p) il = &,

on some part of the boundary. It is worth noting that all the results proved
in the paper apply if such boundary conditions are considered since this only
amount to change the right-hand-side. The regularity of the boundary stress
tensor ¢ (2Re™"S(%0) — p) i is given in the next result.

Lemma 17. Assume that ¢ € L°(Q) N WD (Q) with 7(2) > 2 and r(3) > 3
)

and that a(e), B(e) € L=(Q). Let f € L*(Q)? and (i,p) € H ()4 x L2(Q
satisfying (1). Then, for any I'. C 09, we have

Gri:=¢ (2Re_lS(ﬂ') —p)ii€ (HééQ (Fc)d)/.

PRrROOF. We begin with the proof for d = 3. From Remark 1 and the incom-
pressibility condition, the non-linear term can be written as

div(ed @ @) = e(d - V).
Using eVp = V(ep) — pVe, one has

—div (2Re ™ 'eS(@) — epl) = pVe +e(ii - V)i — ale)d — B(e)idlid| + ef.

For p = 6/5, the Holder inequality gives

Mﬂm@ﬁ@—mwmms|wm@QMb®+mm@wmm@

. 2
+ ”a(E)HLOO(Q) ||u||Lp(Q) + Hﬁ(E)HLw(Q) ||u||L2P(Q)
+Ipll 20y IVEll L3 () -

From the continuous embedding H'(2) C L5(Q) that holds in R?, one gets

div (2Re &S (@) — epl) € L% ()7
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For any ¢ € W?(Q)? with ¢ = 6, we have the Green’s identity
/ 0 - div Gdz +/ G:Vudr = (G - 11, 7), (B.1)
Q Q

where {.,.) is the duality product between (Wlfl/q’q(aQ))/ and W—1/94(9Q).
Note that (B.1) also holds for & € H'(Q) since G € L?(Q)¥¢ ¢ € L5(Q) and
divG € LS/5()?.

Now let p € Héé2(1‘c)d then Eou € H'/2(09)? and, since the trace op-
erator 7 : H'(Q) — HY?(0Q) has a continuous bounded right inverse 7! :
HY2(0Q) — H' (), there exists a 7 = 7~ (Eou) € H'(Q)? such that #]pq =
FEop and

1901 < ) 1 Bottllimssagomys < €l oz oo

for a generic constant C(Q2) > 0. Observe now that
(G 1) (g i = (G Eom) = (G1.9).

The Green’s formula (B.1) together with Holder inequality and the continuous
embedding H'(Q) C L°(Q) then gives that

(Gt wyp,| < 9l 1. (0ya Gl p2qyaxa + [Av(G) | po/s qya 1] s (0
< €O 17y (1€ 2 poes + 145G (0
<

C) Il ey (1G ey + 14V(G) | orageya )

!
which finally shows that G -7 € (Héé 2(Fc)d) by taking the supremum over all

p€ Hyl* (Do),

For the case d = 2, this is very similar and only amount to take p = 2r/(r+2)
and use next the Sobolev’s embedding H'(2) C L*(Q2) that holds with 1 < s <
+oo when d = 2.
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