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Abstract—In this paper, we construct an asymptotic expansion of a time-harmonic wave scattered
by N small spheres. This construction is based on the method of matched asymptotic expansions.
Error estimates give a theoretical background to the approach.
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1. INTRODUCTION

Scattering of a time-harmonic wave by many small obstacles, also called multiple scattering, has
numerous applications in science and engineering. Scattering of acoustic waves by fog or water droplets,
electromagnetic waves in composite materials, or pressure waves in aerosols, emulsions, and bubbly
liquids constitutes few representative examples of such applications. Another application can also be
met in inverse problems such as time reversal [1], where there is a need for efficiently solving the direct
scattering problem.

In this paper, we consider the scattering of a scalar plane wave by N small obstacles, included in a
bounded domain of R

3. In many cases, the scatterers are spheres, or can be assumed to have such a
shape, as for example, when considering dust particles or bubbles. Thus, for simplicity, the scatterers
are assumed to be spheres, having the same radius, which is the small parameter destined to tend to
zero. Usually, the determination of the wave scattered by N obstacles can be done with multipoles
methods [10] requiring the numerical solution of a large linear system. Consequently, such a method
does not directly yield the asymptotic expansion of the scattered wave. To obtain this expansion, we use
the method of matched asymptotic expansions (cf., e.g., [8, 9, 11, 7, 4]) instead. The main advantage
of this procedure is that it yields a convenient way to describe both the field inside a boundary layer
enclosing each sphere and the overall behavior of the scattered field. Error estimates ensure a theoretical
background to the approach.

2. THE SCATTERING PROBLEM

Let Ω be a bounded open domain of R
3 in which are included N small scatterers. We assume

that these small bodies are balls of respective centers cj ∈ Ω of the same radius δ, which is the small
parameter destined to tend to zero. These balls are denoted Bδ

j . This study is dedicated to the scattering

of an incident wave uinc(x) = eiκx·d by these balls and more particularly the asymptotic behavior of the
scattered field as δ tends to zero. Symbol d indicates a unit vector of R

3 giving the direction of the incident
wave. For simplicity, we focus on the case where the refracting properties of each small scatterer are
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SCATTERING OF A SCALAR TIME-HARMONIC WAVE 117

characterized by means of an effective impedance boundary condition, but other instances of scattering
problems can be dealt with along the same lines. The total wave uδ is then the solution to the following
boundary-value problem:

⎧
⎪⎪⎨

⎪⎪⎩

(Δ + κ2)uδ(x) = 0, in R
3\

N⋃

j=1
Bδ

j ,

∂njuδ = αδ
juδ, on Sδ

j , lim
|x|→+∞

|x|
(
∂|x| − iκ

)
(uδ − uinc) = 0,

(2.1)

where αδ
j is the effective impedance of Bδ

j and nj stands for the unit normal vector on the sphere Sδ
j

centered on cj and of radius δ, inwardly directed to Bδ
j . The investigation of the asymptotic properties of

uδ as δ tends to zero needs to first establish the existence and the uniqueness of uδ, and its stability with
respect to a suitably defined right-hand side for the above system.

The uniqueness is obtained in a straightforward way by well-known arguments based on Rellich’s
lemma [6] and, more particularly in this case, on the condition

�m αδ
j > 0, j = 1, . . . , N, (2.2)

expressing that the scatterers are made up from energy absorbing materials. For the existence, a
standard approach is to introduce a fictitious truncating bounded boundary and to take into account
the unbounded part of the domain hence truncated through the related Dirichlet-to-Neumann (DtN)
operator (see for instance [2, 3] where this reduction is detailed for similar problems). We just shortly
show below how this operator is defined. Let R > 0 be the radius of a sufficiently large ball BR enclosing
all of the scatterers Bδ

j . For any given φ in H1/2(SR) where SR is the sphere limiting BR, we denote by v

the solution to the following boundary-value problem whose existence and uniqueness can be obtained
for instance by the limiting-absorption principle (see, e.g., [14]):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v ∈ D′ (
R

3\BR

)
such that θv ∈ H1

(
R

3\BR

)
∀θ ∈ D

(
R

3
)

(Δ + κ2)v = 0 in R
3\BR,

v = φ on SR, lim
|x|→+∞

|x|
(
∂|x| − iκ

)
v = 0.

(2.3)

The DtN operator T : H1/2(SR) → H−1/2(SR) is then defined by Tφ = −∂rv ∈ H−1/2(SR).

Let Ωδ = BR\
N⋃

j=1
Bδ

j . We can then rewrite equation (2.1) on the bounded domain Ωδ equivalently as

follows:
⎧
⎨

⎩

uδ ∈ H1(Ωδ), (Δ + κ2)uδ = 0 in Ωδ,

∂njuδ = αδ
juδ on Sδ

j , ∂ruδ + Tuδ = ∂ruinc + Tuinc in SR.
(2.4)

Existence and stability issues for problem (2.4) can be stated in the framework of the following variational
formulation:

⎧
⎨

⎩

uδ ∈ H1(Ωδ), ∀v ∈ H1(Ωδ),

aδ(uδ, v) = lδ(v),
(2.5)

where aδ(uδ , v) =
∫

Ωδ

〈
∇uδ,∇v

〉
− κ2uδv dx +

∫

SR

Tuδvdσ −
N∑

j=1
αδ

j

∫

Sδ
j

uδvdσ, and v → lδ(v) is an arbi-

trary linear form on H1(Ωδ). We then have the result.

Theorem 2.1. Under condition (2.2) and the following further assumption

αδ
j = νjf(δ), f(δ) > 0, (2.6)
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118 BENDALI et al.

problem (2.4) admits a unique solution uδ and the following bound holds true asymptotically for
δ → 0 with a constant C independent of δ:

‖uδ‖H1(Ωδ) ≤ C sup
‖v‖H1(Ωδ)≤1

‖lδ(v)‖ . (2.7)

Proof. The existence and uniqueness are obtained in a standard way from a Fredholm alternative.
Stability is established by contradiction. We just mention here the two main ingredients of the proof.
The first one relies upon the possibility to extend uδ in a stable way relatively to δ in a function defined
inside the Bδ

j based on the construction described in [13]: uδ coincides with a function still denoted by

uδ ∈ H1(BR) satisfying

‖uδ‖H1(BR) ≤ C ‖uδ‖H1(Ωδ) (2.8)

with a constant C > 0 independent of δ. The second argument uses the energy absorbing properties
of the balls to get that lim

δ→0
f(δ) ‖uδ‖L2(Sδ

j ) = 0 when uδ is a solution of (2.5), uniformly bounded in

H1(Ωδ) relatively to δ, corresponding to a right-hand side such that lim
δ→0

sup
‖v‖H1(Ωδ)≤1

‖lδ(v)‖ = 0.

In the sequel, for simplicity, we assume that the impedance of Sδ
j is in the following form αδ

j = νj/δ.

3. MATCHED ASYMPTOTIC EXPANSIONS

We now want to write an asymptotic expansion of the solution uδ to (2.4). However, no expansion
does exist that would be simultaneously valid in the proximity of the scatterers and far enough from them.
We are thus led to use the method of matched asymptotic expansions to construct an expansion for the
field outside the immediate proximity of the balls and another one inside a boundary layer enclosing
each of them. Relevant introductions to the method of matched asymptotic expansions can be found,
for instance in, [8, 11, 7]. According to the terminology in use for this method, any issue concerning the
expansion outside the proximity of the scatterers and inside the boundary layers will be referred to as
outer and inner, respectively. We, hence, look for an outer expansion in the form

uδ(x) =
n∑

k=0

δkuk(x) + o
δ→0

(δn), x ∈ R
3\

N⋃

j=1

{cj}. (3.1)

The inner expansion corresponds to a zoom on each Bδ
j and is expressed in terms of the fast variables

(R,Θ) = (|x − cj|/δ, (x − cj) /|x − cj |) as follows:

Π(j)
δ (X) = uδ

(
x − cj

δ

)

=
n∑

k=0

δkΠ(j)
k (R,Θ) + o

δ→0
(δn). (3.2)

Of course, the coordinates X or (R,Θ) depend on j, but we leave this dependence implicit for simplicity.

The next parts of this section are dedicated to the determination of the above expansions. The
outer expansion gives rise to no difficulty: we will show that its coefficients are finite sums of suitable
multipoles, that is, linear combinations of products of spherical harmonics by spherical Hankel functions
of the first kind. The difficult part actually relies on the determination of the inner expansion, which
requires solving a kind of recursive Laplace equation. Similar problems have been considered in 2D
(see, for instance, [12, 5, 4]). Actually, in these two steps, we show that both inner and outer expansions
can be expressed in terms of some unknown constants, which can next be obtained by using matching
rules as in [4].
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SCATTERING OF A SCALAR TIME-HARMONIC WAVE 119

3.1. Outer Expansion

We now derive a general expression for the outer coefficients. Plugging expansion (3.1) into (2.1) and
identifying coefficients that correspond to a same power of δ yields

⎧
⎪⎪⎨

⎪⎪⎩

(Δ + κ2)uk(x) = 0 in R
3\

N⋃

j=1
{cj},

lim
|x|→+∞

|x|
(
∂|x| − iκ

) (
uk − δ0

kuinc

)
= 0,

(3.3)

where δ0
k = 1 if k = 0 and 0 otherwise. Matching rules given below ensure that uk has only a finite order

of singularity at each cj , that is, there exists mj ∈ R such that |x − cj|mj |uk(x)| is bounded in some ball
Bρj

j centered at cj and of radius ρj .

The following lemma is a crucial step in the characterization of the solutions to (3.3) although its
proof is simple.

Lemma 3.1. Any solution to (3.3) with a finite order of singularity at each cj can be expressed as
a superposition of multipoles located at each cj as follows:

uk(x) = δo
kuinc(x) +

N∑

j=1

∑

n≥0

h(1)
n (κ|x − cj |)Y (j)

n,k

(
x − cj

|x − cj |

)

, x ∈ R
3\

N⋃

j=1

{cj}, (3.4)

where h
(1)
n is the spherical Hankel function of the first kind of order n and Y

(j)
n,k denotes a spherical

harmonic of order n. Only a finite number of these multipoles are not zero.
The proof is obtained by a separation of variables around each cj and by making use of the Rellich

Lemma ensuring that the only solution to the Helmholtz equation satisfying the radiation condition in all
of R

3 is zero (cf., e.g., [14]). Clearly, the determination of any coefficient of the outer expansion reduces
to that of a finite number of constants by appropriately choosing a basis of the spherical harmonics.

3.2. Inner Expansion

Proceeding as for the outer expansion, we plug its expression (3.2) into (2.1) to get that the inner
coefficients satisfy the following equation, sometimes referred to as a recursive Laplace equation [5],

ΔΠ(j)
k (R,Θ) = −κ2Π(j)

k−2(R,Θ), R
3\B, (3.5)

where B stands for the unit sphere of R
3 and Π(j)

k satisfies (∂RΠ(j)
k − νjΠ

(j)
k )|R=1 = 0. Such kinds of

recursive equation were studied in a two-dimensional setting in [5] but, due to the well-known compli-
cations of the space wave equation in even dimensions, this equation can be more easily solved in the
three-dimensional case. First, by a separation of variables, we see that it is enough to look for solutions

depending on the same spherical harmonic of order n, that is, Π(j)
k (R,Θ) =

∑

n≥0
P

(j)
n,k(R)Y (j)

n,k (Θ), where

P
(j)
n,k satisfies the following recursive equation:

LnP
(j)
n,k =

(
∂R(R2∂R) − n(n + 1)

)
P

(j)
n,k = −κ2R2P

(j)
n,k−2. (3.6)

Then, observing that LnRα = (α − n)(α + n + 1)Rα and that P
(j)
n,k(R) = cRn + d/Rn+1, for k = 0, 1,

where c and d are some unknown constants, we easily prove by induction the following result.

Lemma 3.2. Any solution to the recursive Laplace equation is a finite superposition of particular
solutions corresponding to the spherical harmonics Y

(j)
n,k (Θ), which can be written as follows:

Π(j)
k (R,Θ) =

∑

n≥0

⎧
⎨

⎩

�k/2	∑

l=0

c
(j)
l,n,kR

−(n+1)+2l + d
(j)
l,n,kR

n+2l

⎫
⎬

⎭
Y

(j)
n,k (Θ),
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120 BENDALI et al.

with 2(	k/2
 + 1) unknown constants and 	k/2
 is the largest integer not greater than k/2.
Finally, it is important to note for solving these equations that the first two elements of any solution

to the above recursive Laplace equation depend only on a single unknown constant

P
(j)
n,k(R) = γ

(j)
n,k

{

(n − νj)Rn +
n + 1 + νj

Rn+1

}

, k = 0, 1. (3.7)

3.3. Matching Conditions

The matching conditions link the coefficients of the outer expansion to the inner one and make it
possible to uniquely determine both of them. Actually the exact statement of these conditions depends on
the particular problem being considered (see, e.g., [12, 4]). For the current scattering problem, we follow
the approach of [4]. The matching conditions are then defined as follows successively for m = 0, 1, 2, . . . .

• A truncated expansion in the zone far from the small bodies is considered and expressed with
respect to the fast variables:

um,δ(cj + δRΘ) =
m∑

l=0

δlul(cj + δRΘ).

This function is then expanded in a series of powers of δ and truncated to get:
m∑

l=0

δlul(cj + δRΘ) =
m∑

l=0

δlU
(j)
m,l(R,Θ) + o

δ→0
(δm) . (3.8)

• The matching conditions are then defined as follows:

U
(j)
m,k − Π(j)

k = o
R→+∞

(
1

Rm−k

)

, ∀j = 1, . . . , N. (3.9)

It is worth noting that assuming a series expansion for um,δ(cj + δRΘ) in the form (3.8) implies that
the order of singularity of the outer coefficients at each cj is finite.

To conclude this part, we note that the above matching rules, together with Lemmas 3.1 and 3.2,
establish that these expansions do exist and can be uniquely determined at any order. The proof of this

claim actually reduces to checking that the intermediate functions U
(j)
m,k can be effectively obtained. This

is actually achieved using the translation formulas for multipoles and using the Gegenbauer formula to
write the spherical harmonic expansion of the incident field. All the relevant formulas can be found in [10].

3.4. Explicit Determination of the First Few Terms of the Asymptotic Expansions

We now determine the outer and the inner expansions up to order 1. One ingredient is furnished by
the expansion for the small values of the argument of the spherical Hankel functions [10]:

h(1)
n (z) = (−i)n+1 eiz

z

n∑

l=0

il(l + n)!
l!(2z)l(n − l)!

=
∑

l≥−(l+1)

hl,nzl, (3.10)

from which we infer that hn(z) ∼z→0 C/zn+1.
Now, since u0 must remain bounded as x → cj , Lemma 3.1 implies that u0 = uinc. Taylor expansion

at order 0 then gives that U
(j)
0,0 = uinc(cj). Matching rules (3.9) and the general expression (3.7) for the

solution to recursive Laplace equation then yield Π(j)
0 (R,Θ) =

(
1 − νj

1+νj

1
R

)
uinc(cj), hence, completing

the determination of the zero-order asymptotic expansions.
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SCATTERING OF A SCALAR TIME-HARMONIC WAVE 121

Proceeding as for u0, we use Lemma 3.1 to get that u1 is determined up to N constants u1(x) =
N∑

j=1
h

(1)
0 (κ|x − cl|)Y (j)

0,1 , since spherical harmonics of order zero reduce to constants. The matching

functions are next determined from a Taylor expansion and above formula (3.10):

U
(j)
1,0 (R,Θ) = uinc(cj) −

i

κR
Y

(j)
0,1 ,

U
(j)
1,1 (R,Θ) = R∇uinc(cj) · Θ + Y

(j)
0,1 +

∑

l 
=j

h
(1)
0 (κ|cj − cl|)Y (l)

0,1 .

Matching rules and general first terms expressions for the solution to Laplace recursive equation (3.7)
give the asymptotic expansions at order 1:

u1(x) =
κ

i

N∑

l=1

uinc(cl)
νl

1 + νl
h

(1)
0 (|x − cl|),

Π(j)
1 (R,Θ) =

(

1 − νj

1 + νj

1
R

)
⎛

⎝
κ

i
uinc(cj)

νj

1 + νj
+

N∑

l=1, l 
=j

h
(1)
0 (κ|cj − cl|)

κ

i
uinc(cl)

νl

1 + νl

⎞

⎠

+
(

R +
1 − νj

2 + νj

1
R2

)

(∇uinc(cj) · Θ) .

Similar calculations, which are not detailed here, make it possible to determine the asymptotic
expansions at any order. It is worth noting, however, that Taylor’s expansions can no more be used for

recovering the expressions of the intermediate functions U
(j)
m,�. The involved functions must be expanded

in terms of spherical harmonics to be able to solve the corresponding recursive Laplace equations. This
can be achieved by using instead the translation formulas for multipoles as they are stated in [10], for
instance.

4. ERROR ESTIMATES

In this part, we derive error estimates that give a rigorous justification to the above formal asymptotic
expansions.

4.1. The Uniformly Valid Approximation

Neither the outer nor the inner asymptotic expansion can be used to approximate uδ everywhere.
However, a uniformly valid approximation can be built by suitably mixing both of them. Let χ ∈
D(R+) be a cut-off function such that χ(r) = 1 for r ≤ 1 and χ(r) = 0 for r = 2. A uniformly valid
approximation ũδ,n can then be defined by

ũδ,n(x) =

⎛

⎝1 −
N∑

j=1

χ
(j)
δ (x)

⎞

⎠
n∑

k=0

δkuk(x) +
N∑

j=1

χ
(j)
δ (x)

n∑

k=0

δkΠ(j)
k

(
|x − cj |

δ
,Θ

)

, (4.1)

where χ
(j)
δ (x) = χ

(
|x − cj |/

√
δ
)

. Remark that the uniformly valid approximation is equal to the outer

expansion away from the small scatterers and to the inner expansion in an “asymptotic” neighborhood of

the small balls. More precisely, we have ũδ,n(x) =
n∑

k=0

δkuk(x), for x such that max
j=1,...,N

|x − cj | ≥ 2
√

δ,

and ũδ,n(x) =
n∑

k=0

δkΠ(j)
k

(
|x−cj|

δ ,Θ
)

, δ < |x− cj | ≤
√

δ. These two expansions are not zero simultane-

ously only in the matching zones M(j)
δ =

{
x ∈ Ωδ|

√
δ ≤ |x − cj | ≤ 2

√
δ
}

.
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4.2. Residual Estimate and Stability Property

A quite natural manner for getting a bound on the error resulting from the approximation of uδ by ũδ,n

is to use stability estimate (2.1) and to suitably bound the residual. If eδ,n = uδ − ũδ,n, plugging eδ,n into
system (2.4), we get

⎧
⎨

⎩

(Δ + κ2)eδ,n = (Δ + κ2)ũδ,n in Ωδ,

∂njeδ,n = αδ
jeδ,n, on Sδ

j , ∂reδ,n + Teδ,n = 0 on SR.

Stability property (2.1) then shows that the following bound holds true:

‖eδ,n‖H1(Ωδ) ≤ C
∥
∥(Δ + κ2)ũδ,n

∥
∥

L2(Ωδ)

with C independent of δ. Long but straightforward estimates readily yield then the following bound.

Theorem 4.1. The following estimates holds true asymptotically for δ → 0:

‖uδ − ũδ,n‖H1(Ωδ) ≤ CNδ
n
2
+ 1

4 ,

where C > 0 is a constant that does not depend on δ or on the number N of small balls.
Now let ρ > 0 be sufficiently small such that Bρ

j does not contain any c� except cj . Define Fρ as

Ωδ\
j=N⋃

j=1
Bρ

j . As a corollary, we get the following bound from the general above estimate and by making

use of a simple triangular inequality:

‖uδ − uδ,1‖H1(Fδ) ≤ Cδ2.

Since uδ,1(x) = uinc(x) + δ κ
i

N∑

l=1

uinc(cl) νl
1+νl

h
(1)
0 (|x − cl|) for x ∈ Fρ, it appears that a first-order ap-

proximation of the field scattered by N small balls is nothing else but the field obtained by neglecting the
mutual interactions between the small scatterers.
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