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Abstract. All grid-based discretizations of the Helmholtz equation suffer from the so-called
pollution effect, which is caused by numerical dispersion: plane waves propagate at the discrete
level at speeds which differ from the speed at the continuous level. This leads to poor numerical
approximations, unless very fine meshes are used. We propose here a new finite difference scheme
to do dispersion correction for the two dimensional Helmholtz equation with constant wavenumber
on rectangular domains discretized with finite difference methods on uniform meshes. The main
innovations are first the use of a real shift in the wave number used in the discrete scheme, which
is different from the continuous wave number, and second, an asymptotic analysis which allows us
to determine closed form finite difference schemes without any numerical optimization. We also
prove that our asymptotically optimized scheme is sixth order accurate for plane wave solutions.
Numerical experiments show that our new optimized scheme has a very small dispersion error when
only few points per wavelength are used, and can be effective when solving Helmholtz problems using
multigrid.
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1. Introduction. The Helmholtz equation is a model problem for time-harmonic
wave propagation. Solving the Helmholtz equation numerically for medium to large
wavenumbers is a hard task [15], since the continuous operator is not coercive, the
continuous and discrete operators are complex symmetric but not hermitian, and fi-
nally the solutions are highly oscillatory. In addition to these difficulties, all grid
based discretizations of the Helmholtz problem suffer from the so-called pollution ef-
fect [3, 4, 22, 12, 36], because of the numerical dispersion that causes plane waves at
the discrete level to have a wavenumber different from the continuous one. There-
fore the numerical solution propagates at a speed different from the correct one and,
although having the correct magnitude, the numerical solution has a phase lead or
lag (see e.g. [1, 19, 16]). In order to control these effects, one either needs to use
high order methods, or consider fine enough meshes which lead to very large systems
whose size increases in general more than linearly with the wavenumber.

Reducing numerical dispersion, also known as dispersion correction, for Finite Dif-
ference (FD) approximations of the Helmholtz equation has already been addressed
by several authors. The authors of [23] consider a 9-point stencil with free parameters,
which are computed numerically using a steepest descent method to obtain discrete
phase curves closest to the continuous one. This leads to a FD method that still works
quite well using only 4 grid points per wavelength. In [6] (see [7] for similar results
in 3D), a second order 9-point stencil is modified to get pointwise consistent approx-
imations of the Helmholtz problem with cartesian Perfectly Matched Layers (PML).
Some free parameters involved in the definition of the stencil are then determined by
minimizing the average L2 error of the difference between the normalized numerical
phase velocity and the continuous one. The optimization is done numerically for sev-
eral values of the angles by considering a least-squares minimization problem. Similar
results have been obtained in [8], where the optimal parameters are computed nu-
merically by minimization of the difference between what the authors call numerical
wavenumber (see Remark 2.2 for its precise definition) and continuous wavenumber.
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Numerical simulations show that the scheme with dispersion correction has slightly
less pointwise error than the non-optimized version. Also, for some specific angle and
6 or 12 grid points per wavelength, the optimized scheme has an error that does not
grow with the wavenumber when approximating plane wave solution.

Dispersion correction has also been investigated for higher order schemes. In [34],
a 9-point stencil with fourth-order accuracy is built and a sixth order one can be
found in [35]. It is worth noting that both of these numerical methods are defined
for variable wavenumber as well and that their construction is based on some results
from [33]. For constant wavenumber, both stencils have free parameters that are
later computed using a numerical minimization procedure to reduce the numerical
dispersion. However, since the constants in the stencils depend in a non-trivial way
on the wavenumber and the meshsize, the numerical wavenumber is not easily com-
putable. As a result, the authors do not compute the free parameters by minimizing
the difference between the numerical and continuous wavenumbers and define a re-
fined strategy to determine them. The resulting optimized coefficients are piecewise
constant functions of the number of grid points per wavelength. Numerical simu-
lations show that the scheme with dispersion correction has slightly less pointwise
error than its non-optimized version. In [28], the α-interpolation method is used on
a fourth order finite difference stencil and some rectangular bilinear finite elements.
The authors minimize the maximum norm (over all angles) of the relative phase error
to get the parameter α and show, through some numerical simulations, that their
scheme has a small pollution effet.

There are also some dispersion correction results which do not resort to numerical
optimization. For instance, in [20] a high order FD method is designed using Padé
approximations (see also [32]) and it is shown that the dispersion can be minimized
along grid diagonals in 2 and 3 dimensions. For the one dimensional Helmholtz
problem, the authors build their 3-point stencil with a more general definition of
the derivative, as one can find also in non-standard FD methods [2], and they show
that exact phase representation can be achieved. In [24], centered FD schemes are
defined with an undetermined weight that is then computed in order to maximize the
accuracy of the second order operator when approximating plane waves. Numerical
simulations show that this choice greatly reduces the average error of the scheme on
plane wave solutions for any angle.

Another advantage of FD schemes with reduced numerical dispersion is that they
enhance the performance of multigrid solvers. In [30], FD schemes with dispersion
correction and free parameters are designed. The coefficients depend piecewise poly-
nomially on kh and are obtained by numerical minimization of two separate cost
functions. The first one involves the phase error with a regularization term while
the second one only considers the amplitude error. The resulting FD scheme is then
used in a multigrid method with coarsest mesh having three points per wavelength.
Numerical tests on 3-D examples show that this technique, compared to some ex-
isting methods from the literature, allow to significantly save computation time. A
second order 9-point stencil with free parameters has been considered in [31]. The
coefficients are again obtained through the minimization of phase slowness for several
angles. Again, the multigrid algorithm with the FD scheme with dispersion correction
performs much better than the classical algorithm, both in terms of iteration num-
bers and computational time. An even earlier result dealing with the performance
of the multigrid algorithm for Helmholtz equations when doing dispersion correction
can be found in [16]. The authors use, on the fine grid, a real shift on the wavenum-
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ber that allows to match the discrete and continuous dispersion relations exactly in
1D. They then use this scheme in a multigrid algorithm and show that the resulting
algorithm converges for any number of levels inside a V -cycle and any wavenumber.
An extension to the case of piecewise-constant wavenumber that shows similar per-
formance can be found in [9]. These results are actually quite impressive, because
with standard FD or finite element (FE) methods, the multigrid algorithm is known
to be unusable, unless a complex shifted wavenumber with a large enough imaginary
part is used [11, 13, 12]. For one-dimensional Helmholtz equations, using a real shift
is actually equivalent to non-standard FD [2], and to design the stencil using a more
general definition of the derivative [20, p. 4, Eq. (10)]. The idea of the real shift
on the wavenumber has also been investigated in [10]. A second order 9-point stencil
with free parameters has been used and the wavenumber has also been considered as a
parameter. The shifted wavenumber depends explicitly on the other free parameters.
All the remaining coefficients have then been computed by minimizing the average L2

norm of the phase speed. Numerical simulations indicate that the FD scheme with
dispersion correction is actually sixth order accurate for plane wave solutions, while
formally being only second order accurate.

In this paper, we study dispersion correction based on the idea of using a real-
shift on the wavenumber in the numerical scheme. In addition, we wish to compute
the optimized coefficients explicitly without any numerical optimization. To achieve
this, we rely on asymptotic dispersion correction. This means that we determine the
free parameters of our FD stencil, including a shifted wavenumber k̃ = k̃(k, h), by
requiring that its discrete wavenumber approximates the continuous one with best
error when the number of grid points per wavelength G = G(k, h) := 2π/(kh) goes to
infinity1. We will see that this approach gives surprisingly good dispersion corrections
for G already below ten points per wavelength.

Our paper is organized as follows: first we theoretically study the link between
the order of the scheme on plane waves, the approximation order of the continuous
wavenumber by its discrete counterpart, and the distance between the two dispersion
relations. We prove that these three items are of the same order, which allows us
to do asymptotic dispersion correction considering either the distance between the
dispersion relations or the distance between discrete and continuous wavenumbers.
We consider next a 9-point FD stencil and perform a first asymptotic dispersion
correction without a real shift on the wavenumber. This allows us to determine some
of the free parameters and to get a fourth order scheme whose discrete wavenumber
is then also a fourth order approximation of the continuous one as G → +∞. The
idea of using a shifted wavenumber k̃ = k̃(k, h) is then investigated. This allows
us to determine explicitly the remaining coefficients that yield an FD stencil whose
discrete wavenumber is shown to be a sixth order approximation of the continuous
one as G → ∞. We conclude with some numerical simulations which show that our
new dispersion correction including the modified wave number k̃ can give accurate
solutions already for G = 2.5 points per wavelength for wave numbers up to about
one hundred on the square (−1, 1)2, and the asymptotically optimized coefficients also
give a very good dispersion correction for typical engineering values of G = 10 − 12
points per wavelength. These numerical experiments involve the computation of the
relative error on a model problem as well as the study of the performance of multigrid
V and W-cycles.

1To simplify the notation, we will not explicitly write the dependence of k̃ and G on k and h
later in the analysis.
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2. Approximation error of the discrete wavenumber. We now prove a
general result giving a relationship between the accuracy of a FD scheme, the ap-
proximation order of the continuous wavenumber by its discrete counterpart, and the
distance between the continuous and the discrete dispersion relations. For the FE
method, the discrete wavenumber has been computed explicitly in some special cases
and is known to approximate the continuous wavenumber with the same accuracy as
the numerical method [4, 22, 3, 1]. A similar result holds also for FD schemes (see e.g.
[6, Proposition 3.3], [8, Propositon 3.1], [34, Proposition 3.1]). All these results were
obtained by direct computations, and no general result seems to be currently avail-
able. The computation of the distance between the two dispersion curves is actually
directly linked to the goal of this paper, namely doing dispersion correction: having
these two curves as close as possible reduces the numerical dispersion.

We consider a FD discretization of the Helmholtz operator Hu = −(∆ + k2)u,
which can be written as

(H(k, h)u)i,j = (−∆hu)i,j − k2(Mhu)i,j ,

where h is the meshsize, Mh is a mass term obtained for instance from a symmetric
9-pt stencil (see e.g. [10, p. 4]) and the subscripts i, j indicate the grid point (xi, yj)
where the approximation is computed.

Remark 2.1. In this paper, we consider only rectangular domains with uniform
rectangular meshes with meshsize h, and emphasize that the subscripts i, j are related
to interior points only.

For ξ = (ξ1, ξ2) and x = (x, y), the (discrete) symbol is defined by

σ(k, h, ξ) :=
(
e−ix·ξ)

i,j

(
H(k, h)eix·ξ

)
i,j

, (2.1)

and does not depend on the grid point (xi, yj) where it is computed, since the meshes
we consider are uniform. The continuous and discrete dispersion relations are then
defined by the sets

Dc :=
{
ξ ∈ R2 | |ξ|2 − k2 = 0

}
, Dh :=

{
ξ ∈ R2 | σ(k, h, ξ) = 0

}
, (2.2)

and setting e(θ) = (cos(θ), sin(θ)), the discrete wavenumber kd = kd(k, h, θ), which
depends on the angle θ, is the solution to the equation

σ(k, h, kd(k, h, θ)e(θ)) = 0, (2.3)

since we want discrete plane waves to satisfy (H(k, h)eikdx·ξ)i,j = 0.
Remark 2.2. Some authors call the discrete wavenumber also the numerical

wavenumber. Nevertheless, it is worth pointing out that a different definition of the
numerical wavenumber is used in [6, 8, 34, 36] where it is defined as kN satisfying
σ(kN , h, ke(θ)) = 0.

It is convenient to work with the number of grid-points per wavelength2 defined
as G := 2π/(kh). Therefore, the discrete wavenumber actually depends on (k,G, θ)
and satisfies

σ

(
k,

2π

kG
, kde(θ)

)
= 0. (2.4)

2In this paper, we will both work with h and G. We note that G → +∞ will mean that h → 0.
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The next result shows that the accuracy of the FD scheme on plane wave solutions
is the same as the difference between the discrete and continuous wavenumber when
G → +∞. The same result also holds for the distance between the discrete and
continuous dispersion curves defined in (2.2).

Theorem 2.3. Assume that the discrete symbol is smooth in all its variables for
large enough G. Assume also that the first derivatives of the symbol satisfy

∇ξσ

(
k,

2π

kG
, ξ

)
= c2ξ +N(k,G, ξ),

where c2 is a constant and ∥N(k,G, ξ)∥ ≤ c̃(ξ)G−1 where ξ ∈ R2 7→ c̃(ξ) > 0 is
continuous. Then the two following statements are equivalent:

i) The FD scheme is accurate of order q ∈ N∗ for all plane wave solutions, that
is

∀ θ ∈ [0, 2π], (H(k, h)eikx·e(θ))i,j = OG→∞(G−q)k2.

ii) The discrete wavenumber admits the asymptotic expansion kd = k (1 +OG→+∞(G−q)) .

If in addition, the discrete dispersion relation admits a polar representation then ii)
is also equivalent to

iii) The distance between the discrete and continuous dispersion relations satisfies
dist(Dh,Dc) = kOG→∞(G−q).

Above, the OG→∞(.) only depends on θ except in statement iii).

Proof. ii) ⇒ i) We obtain by a direct computation that

(H(k, h)eikx·e(θ))i,j =
(
eikx·e(θ)

)
i,j

(
e−ikx·e(θ)

)
i,j

(H(k, h)eikx·e(θ))i,j

=
(
eikx·e(θ)

)
i,j

(σ(k, h, ke(θ))− σ(k, h, kde(θ))))

= eik(xicos(θ)+yjsin(θ))

(∫ 1

0

∇ξσ(k, h, kde(θ) + se(θ)(k − kd)) · (k − kd)e(θ)ds

)
,

where we used that kd satisfies (2.4). Using now the assumption on the derivative of
the discrete symbol with respect to ξ, and that G = 2π/(kh), we get∣∣∣∣∫ 1

0

∇ξσ(k, h, kde(θ) + se(θ)(k − kd)) · (k − kd)e(θ)ds

∣∣∣∣
≤ |c2||k − kd|

∫ 1

0

∥kde(θ) + se(θ)(k − kd)∥ ds+ |k − kd|
∫ 1

0

∥N(k,G, kde(θ) + se(θ)(k − kd))∥ ds

≤ |c2|kd|k − kd|+ |k − kd|
(
|c2||k − kd|+G−1

∫ 1

0

c̃(kde(θ) + se(θ)(k − kd)))ds

)
.

Because of the continuity of ξ 7→ c̃(ξ), we have

lim
G→+∞

∫ 1

0

c̃(ke(θ) + se(θ)(k − kd)))ds = c̃(ke(θ)),

and thus (H(k, h)eikx·e(θ))i,j = k2OG→+∞(G−q) which yields the desired result.
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i) ⇒ ii) Recall that the discrete wavenumber satisfies (2.4). Since H(k, h) is a FD
discretization of the Helmholtz operator, the discrete symbol converges, as h → 0, to
the symbol of the continuous operator. This gives

lim
h→0

σ(k, h, ξ) = |ξ|2 − k2. (2.5)

As a result, we have 0 = limh→0 σ(k, h, kde(θ)) = −k2 + limh→0 kd(k, h, θ)
2, which

shows that the zeroth-order term in the expansion of kd is limh→0 kd(k, h, θ) =
k. Note that G → +∞ as h goes to zero and thus we have also proved that
limG→+∞ kd(k,G, θ) = k. From i), we get for large enough G that

e−ik(xicos(θ)+yjsin(θ))

(
H
(
k,

2π

kG

)
eikx·e(θ)

)
i,j

= σ

(
k,

2π

kG
, ke(θ)

)
= OG→+∞(G−q)k2.

Since σ(k, h, kde(θ)) = 0, σ
(
k, 2π

kG , ke(θ)
)
−σ

(
k, 2π

kG , kde(θ)
)
= OG→+∞(G−q)k2, and

a Taylor expansion gives

OG→+∞(G−q)k2 = (k − kd)

(∫ 1

0

∇ξσ(k,
2π

kG
, kde(θ) + se(θ)(k − kd)) · e(θ)ds

)
= (k − kd)

∫ 1

0

F (k,G, kd, e(θ), s)ds.

We thus get that

(k − kd) =
OG→+∞(G−q)k2∫ 1

0
F (k,G, kd, e(θ), s)ds

, (2.6)

and the assumption on ∇ξσ gives∫ 1

0

F (k,G, kd, e(θ), s)ds =

∫ 1

0

c2kd + s(k − kd)ds

+

∫ 1

0

N(k,G, kde(θ) + se(θ)(k − kd)) · e(θ)ds

= c2k + o(1) +O(G−1) = c2k + o(1),

where we used the bound on N , the continuity of ξ 7→ c̃(ξ) and that kd → k as
G → +∞. Using this in (2.6), we have

k − kd =
OG→+∞(G−q)k2

c2k + o(1)
= OG→+∞(G−q)k,

which gives the desired estimate.
ii) ⇔ iii) Because of the additional assumption, for any θ ∈ [0, 2π], there is a

unique ξ(θ) ∈ Dh such that ξ(θ) = ∥ξ(θ)∥ e(θ). Since the discrete wavenumber is a
solution to (2.4) we obtain that kd(θ) = ∥ξ(θ)∥ and that

dist(Dh,Dc) = max {∥ξh − ξc∥ , ξh ∈ Dh and ξc ∈ Dc}
= max

θ∈[0,2π]
∥ξ(θ)− ke(θ)∥ = max

θ∈[0,2π]
∥kd(θ)e(θ)− ke(θ)∥

= max
θ∈[0,2π]

|kd(θ)− k|.
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The equivalence between statements ii) and iii) then easily follows.
In the proof, we used (2.5) which means that the discrete symbol converges to the

continuous one, namely (|ξ|2 − k2), as h → 0 (or G → +∞). If the discrete symbol
is real-analytic with respect to (k, ξ) ∈ R∗

+ × R2 one gets that the derivatives of the
discrete symbol converge to those of the continuous symbol as h → 0. This gives

lim
h→0

∇ξσ (k, h, ξ) = 2ξ,

and thus c2 = 2. Nevertheless, in practice, it is easy to check that the standing
assumption of Theorem 2.3 is satisfied for the 5 or 9-point stencil and by some FD
methods with coefficients depending on kh = 2π/G as those from [20, 32, 34, 35].

3. Asymptotic dispersion correction for the 9-point stencil. We consider
a FD discretization of the two-dimensional Helmholtz equation on a uniform grid with
meshsize h > 0 given by a 9-point stencil. The Helmholtz operator at the discrete
level is then defined by

(Hhv)i,j :=

(
4a

h2
− k2b

)
v(xi, yj)

+

(
1− 2a

h2
− k2c

4

)
(v(xi−1, yj) + v(xi+1, yj) + v(xi, yj−1) + v(xi, yj+1)) . (3.1)

−
(
1− a

h2
+ k2

1− b− c

4

)
(v(xi−1, yj−1) + v(xi+1, yj−1) + v(xi−1, yj+1) + v(xi+1, yj+1)) ,

where a, b, c are some positive constants. The above numerical scheme is second order
accurate for any a, b, c. In this section, we are interested in having the most accurate
discrete wavenumber as G → +∞ for our asymptotic dispersion correction. According
to Theorem 2.3, the discrete wave number accuracy is directly linked to the accuracy
of Hh on plane wave solutions which can be of order four for a suitable choice of the
constants as we now show.

Theorem 3.1. Assume that u is a solution to the homogeneous Helmholtz equa-
tion Hu = 0 in a neighborhood O of (xi, yj) such that (xi, yj) + hv ∈ O for any
∥v∥ = 1. Then for

a =
5

6
,
c

4
+

b

2
− 5

12
= 0,

we have (Hhu)i,j = Oh→0(h
4). In addition, for plane-wave solutions, we have that(

Hhe
ikx·e(θ))

i,j
= k2OG→+∞(G−4), where this OG→+∞(.) only depends on θ.

Proof. Since the solution to Hu = 0 is smooth on O, a Taylor expansion3 gives

(Hhu)i,j = Oh→0(h
4)− k2u(xi, yj)−∆u(xi, yj) (3.2)

+h2

(
− 1

12
∂4
x − 1

12
∂4
y +

ck2

4
∆ + (a− 1)∂2

x∂
2
y + (b− 1)

k2

2
∆

)
u(xi, yj)

We have (∂4
x4 + ∂4

y4)u = (−2∂2
x∂

2
y +∆2)u since u is smooth. The second order term

in (3.2) is then

h2

(
− 1

12
∆2 +

(
1

6
− 1 + a

)
∂4
x2y2 + k2

(
c

4
+

b

2
− 1

2

)
∆

)
u(xi, yj). (3.3)

3Symbolic-type computations can be used for this, see Section 7.
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Using now that Hu = 0, we obtain ∆Hu = 0 from which we infer that ∆2u = −k2∆u
and thus (3.3) becomes

h2

((
−5

6
+ a

)
∂4
x2y2 + k2

(
c

4
+

b

2
− 1

2
+

1

12

)
∆

)
u(xi, yj).

Finally, chosing a, b, c as above gives that (Hhu)i,j = Oh→0(h
4).

Direct computations with these parameters then yield(
Hhe

ikx·e(θ)
)
i,j

= −eik(xi,yj)·e(θ)

720
h4k6

(
3 + (90c− 16)(cos(θ)4 − cos(θ)2)

)
+ k2O((kh)6), (3.4)

which proves the second statement of the theorem.
Remark 3.2. The previous theorem is only valid for homogeneous or harmonic

right hand side which is enough for the goals of this paper, that is to build FD schemes
with reduced numerical dispersion. The case of inhomogeneous right-hand-side can be
handled by modifying the discrete right hand side as in [34, 35]. For our 9-point
stencil, it is enough to replace the usual fi,j source term with the modified stencil

fi,j +
h2

12 (∆hf)i,j , where (∆hf)i,j denotes the approximation of the Laplace operator
with the standard 5-point stencil.

The discrete wavenumber kd is defined by (2.4) where one can replace h =
2π/(kG) if one wishes to have its asymptotics as the number of grid points goes
to infinity. From Theorems 3.1 and 2.3 we get that the discrete wavenumber satisfies
the asymptotic expansion kd = k + kOG→+∞(G−4), where the O(.) only depends on
θ.

4. Asymptotic dispersion correction using a real-shift for the wavenum-
ber. We show in this section how the 9-point FD scheme (3.1) with a fourth order
discrete wavenumber can be improved to get a sixth order discrete wavenumber. To
reach this goal, we follow an idea from [16] which uses a different wavenumber at the
discrete level to get a numerical scheme whose dispersion relation equals the continu-
ous one in 1D. Since such exact dispersion correction can only be obtained in 1D, we
are going to use the free parameters c and k̃ to minimize the dispersion error as the
number of grid points per wavelength goes to infinity.

Our approach is rather geometric since we wish to find (k̃, c) so that the discrete
dispersion relation is as close as possible to the continuous one when G = 2π/(kh)
goes to +∞. Because of Theorem 2.3, this will yield a discrete wavenumber closer to
the continuous one. According to (2.2), the two sets of interest are defined by

Dc :=
{
(ξ1, ξ2) ∈ R2 | ξ21 + ξ22 − k2 = 0

}
,

D̃h := {(ξ1, ξ2) ∈ R2 | (4ah−2 − k̃2b) + 2( 1−2a
h2 − k̃2c

4 )(cos(hξ1) + cos(hξ2))

−2( 1−a
h2 + k̃2 1−b−c

4 )(cos(h(ξ1 + ξ2)) + cos(h(ξ1 − ξ2))) = 0}.

Due to the symmetries of the discrete dispersion relation, it is enough to work only
in the upper right quarter plane ξ1 > 0, ξ2 > 0. Therefore we compute, for a given
angle θ ∈ [0, π/2), the distance between the origin and the intersection of D̃h with
the line ξ2 = tan(θ)ξ1. The case θ = π/2 will be done later. We also set

L(θ) :=
{
(ξ1, ξ2) ∈ R2 | ξ1 > 0, ξ2 > 0, ξ2 = tan(θ)ξ1

}
.
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The next theorem gives the distance, as G goes to ∞, between the origin and the
discrete dispersion relation for a given angle.

Theorem 4.1. Let θ ∈ [0, π/2), (x(θ), y(θ)) ∈ D̃h∩L(θ) and d(θ) =
√

x(θ)2 + y(θ)2.

Assume that k̃h = k0 + k1G
−1 + · · ·+ k6G

−6 and c = c0 + c1G
−1 + c2G

−2. Then we
have the asymptotic expansions k̃ = k − π4k

30 G−4 + k6G
−6, c = 8

45 + c2G
−2 and

d(θ) = k + kd6(θ, k6, c2)G
−6 +O(G−7),

with

(k6, c2) =

(
−π2k

192
,−π2

54

)
= argmink6,c2

(
max

θ
(|d6(θ, k6, c2)|)

)
.

Proof. Note first that (x(θ), y(θ)) satisfies the set of equations

x(θ) > 0, y(θ) > 0 and y(θ) = tan(θ)x(θ),

F (k̃, c, x(θ), y(θ), G) :=

(4aG2/π2 − k̃2b) + 2( 1−2a
π2 G2 − k̃2c

4 )(cos(x(θ) 2π
kG ) + cos(y(θ) 2π

kG ))

−2( 1−a
π2 G2 + k̃2 1−b−c

4 )(cos((x(θ) + y(θ)) 2π
kG ) + cos((x(θ)− y(θ))) 2π

kG ) = 0,

and is uniquely defined. Since the equation F = 0 does not have explicit solutions,
we use asymptotic analysis, assuming that x(θ) can be written as

x(θ) =

6∑
j=0

xjG
−j +OG→∞(G−7). (4.1)

Inserting (4.1) into F and doing some lengthy but not difficult computations, we get

F (k̃, c, x(θ), y(θ), G) =
1

3

(−3cos(θ)6k4k̃2 + 3cos(θ)4k4x2
0)

k4cos(θ)6
+

1

G

(
2x0x1

cos(θ)2

)
+

1

3G2

(
k̃2π2x2

0cos(θ)
2 + 6x2x0k

2cos(θ)2 + 3x2
1k

2cos(θ)2 − π2x4
0)

k2cos(θ)4

)

+
1

3G3

2k̃2π2x1x0cos(θ)
2 + 6x3x0k

2cos(θ)2 + 6x2x1k
2cos(θ)2 − 4π2x1x

3
0

k2cos(θ)4

+OG→∞(G−4),

from which we infer the first coefficients of x(θ) and k̃

lim
G→+∞

k̃ = k, x0 = kcos(θ), x1 = 0, x2 = 0 and x3 = 0.

Continuing the asymptotic expansion of F as G → +∞ and using the above constants,

9



we obtain

F (k̃, c, x(θ), y(θ), G) = (k2 − k̃2) +
π2

3G2
(−k3 + kk̃2)

+
k̃2π4

945G4
(c(−1890 cos(θ)6 + 420 cos(θ)2 + 1890) cos(θ)2 + 420 cos(θ)2(cos(θ)2 − 1)− 105)

+
1

945G4 cos(θ)
(−84π4 cos(θ)5k3 + 84π4 cos(θ)3k3 + 42π4 cos(θ)k3 + 1890k2x4) +

2kx5

cos(θ)G5

+
2ck̃π6

3G6
(cos(θ)4 − cos(θ)2)

+
k̃2

945k cos(θ)G6
(−168π6 cos(θ)5k + 168π6 cos(θ)3k + 14π6 cos(θ)k + 630π2x4)

+
1

945k cos(θ)G6
(−20π6 k̃2

945k cos(θ)G6
k3 + 40π6 cos(θ)7k3 − 4π6 cos(θ)5k3

−16π6 cos(θ)3k3 − 3π6 cos(θ)k3 − 1260π2k2x4 + 1890k2x6)

+
x5π

2

945k cos(θ)G7
(−1260k2 + 630k̃2) + kO(G−8),

which gives x5 = 0. We now assume that the shifted wavenumber k̃ and c can be
written as

k̃ =
6∑

j=0

kjG
−j +OG→∞(G−7), c =

2∑
j=0

cjG
−j +OG→∞(G−3), (4.2)

where the kj and cj do not depend on θ and k0 = limG→+∞ kd = k. Note that
we expand c only up to order 2 since it appears at order 4. Inserting (4.2) into the
asymptotic expansion of F , we find

F (k̃, c, x(θ), y(θ), G) = (k − k0)− 2
k1k

G

+
1

45G2
(−15π2k2 + 15π2k20 − 90k0k2 − 45k21)

+
1

45G3
(30π2k0k1 − 90k0k3 − 90k1k2) + kOG→∞(G−4),

which gives k0 = k, k1 = 0, k2 = 0 and k3 = 0. Continuing the asymptotic
expansion of F yields

F (k̃, c, x(θ), y(θ), G) = kOG→∞(G−8)

+
k

cos(45θ)G4
(90π4 cos(θ)5c0k − 16π4 cos(θ)5k − 90 cos(θ)3c0k + 16π4 cos(θ)3k

+3π4 cos(θ) + 90k4 cos(θ)− 90x4)

− 2k

G5
(π4 cos(θ)4c1k − 1890π4 cos(θ)2c1k + k5 cos(θ))

− k

945 cos(θ)G6
(20π6 cos(θ)9k − 40π6 cos(θ)7k − 630π6 cos(θ)5c0k − 1890π4 cos(θ)3c2k

+172π6 cos(θ)5k + 630π6 cos(θ)3c0k + 1890π4 cos(θ)5c2k − 152π6 cos(θ)3k

−11π6k cos(θ)− 630k4π
2 cos(θ) + 630x4π

2x4 + 1890k6 cos(θ)− 1890x6).
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This finally gives that if

k4 = −π4k

30
, k1 = 0, c0 =

8

45
and c1 = 0,

then x4 = 0 and x6 can be determined to have F = O(G−8). The asymptotic
expansion of x(θ) is then

x(θ) = k cos(θ) +O(G−7)

+ G−6 k cos(θ)

189
(2 cos(θ)8π6 − 4 cos(θ)6π6 + 6 cos(θ)4π6 (4.3)

+ 189 cos(θ)4π4c2 − 4 cos(θ)2π6 − 189 cos(θ)2π4c2 + π6 + 189k6/k)

= k cos(θ) + k cos(θ)X6(θ, k6, c2)G
−6 +O(G−7), (4.4)

where one can determine the expression of X6 easily by identification.
The distance between the discrete and continuous dispersion relations then has

for G large the expansion

d(θ) =
√
x(θ)2 + y(θ)2 =

√
1 + tan(θ)2x(θ)

= k + kG−6
√

1 + tan(θ)2 cos(θ)X6(θ, k6, c2) +O(G−7),

which gives d6(θ, k6, c2) = X6(θ, k6, c2). We now wish to determine (c2, k6) such that
maxθ∈[0,π/2] |d6(θ, k6, c2)| is minimal since we want these parameters independent of
θ. Therefore, we have to solve the min-max problem

min
c2,k6

max
θ∈[0,π/2]

|d6(θ, k6, c2)|. (4.5)

First, to simplify the overall computations, we defineH(Y, k6, c2) = d6(arccos(Y ), k6, c2)
that is

H(Y, k6, c2) =
2

189
Y 8π6− 4

189
Y 6π6+

2

63
π6Y 4+c2Y

4π4− 4

189
π6Y 2−π4Y 2c2+

1

189
π6+

k6
k
.

Now note that maxθ∈[0,π/2] |d6(θ, k6, c2)| = maxY ∈[−1,1] |H(Y, k6, c2)|, and thus solv-
ing the min-max problem (4.5) is equivalent to solving the min-max problem asso-
ciated with H. We start by computing the critical points of H, which satisfy the
polynomial equation

0 = ∂Y H =
16

189
π6Y 7 − 8

63
Y 5π6 +

(
8

63
π6 + 4π4c2

)
Y 3 −

(
8

189
π6 + 2π4c2

)
Y,

whose solutions are

Y1 = 0, Y2 =
±1√
2
, Y ±,±

3 = ± 1√
2π

√
π2 ±

√
−3π4 − 189π2c2,

where there are four different Y3. Since H(−Y ) = H(Y ), we get that

max
Y ∈[−1,+1)

|H(Y, k6, c2)| = max
{
|H(Y1)|, |H(Y ±

2 )|, |H(Y ±,±
3 )|

}
= max{

∣∣∣∣ π6

189
+

k6
k

∣∣∣∣ , ∣∣∣∣− π6

189
− π4c2 −

189

8
π2c22 +

k6
k

∣∣∣∣
,

∣∣∣∣ π6

1512
− π4

4
c2 +

k6
k

∣∣∣∣}
= max {|R1(k6/k, c2)|, |R2(k6/k, c2)|, |R3(k6/k, c2)|} .
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Fig. 4.1. Representation of |Rj(k̃6, c2)| for a fixed c2.

Note that the functions k6 7→ Rj only depend on k6/k. As a result, denoting by

k̃6 := k6/k, problem (4.5) reduces to find (c2, k̃6) that satisfy

min
c2,k̃6

max
{
|R1(k̃6, c2)|, |R2(k̃6, c2)|, |R3(k̃6, c2)|

}
. (4.6)

We are going to work first with fixed c2, hence we wish to find k̃6(c2) that minimizes

the maxj{|Rj(k̃6, c2)|} for each c2. The solution to problem (4.6) will then be obtained

by computing the minimum of the real function c2 7→ maxj{|Rj(k̃6(c2), c2)|}. We
introduce the useful notation

R1 := −γ1 + k̃6, R2 := −γ2(c2) + k̃6, R3 := −γ3(c2) + k̃6.

Note that for any c2, the functions k̃6 7→ R(k̃6, c2) are affine with the same slope. As

seen from Figure 4.1, the optimal value k̃6(c2) that minimizes maxj{|Rj(k̃6, c2)|} for
each c2 is reached when

Rl(k̃6, c2) = −Rr(k̃6, c2), (4.7)

where the subscripts l, r stand for left and right and Rl = Rj if γj(c2) < γn(c2) for
n ̸= j, and Rr = Rj if γj(c2) > γn(c2) for n ̸= j. It can be observed by direct
calculation that γ2(c2) ≥ γ3(c2) and γ2(c2) ≥ γ1 for any c2 and thus (4.7) reduces to
the two following cases:

a) γ3 ≤ γ1 ≤ γ2 that is R3(k̃6, c2) = −R2(k̃6, c2). This gives k̃
(1)
6 (c2) = π6

432 +
5
8π

4c2 +
189
16 π2c22.

b) γ1 ≤ γ2 ≤ γ3 that is R1(k̃6, c2) = −R2(k̃6, c2). This gives k̃
(2)
6 (c2) =

π4

2 c2 +
189
16 π2c22.

The optimization problem (4.6) is then equivalent to solve

min
c2

max
{
−R2(k̃

(1)
6 (c2), c2),−R2(k̃

(2)
6 (c2), c2)

}
= min

c2
max

{
π6

336
+

3π4

8
c2 +

189

16
π2c22,

π6

189
+

π4

2
c2 +

189

16
π2c22

}
.
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Since both c2 7→ −R2(k̃
(j)
6 (c2), c2) are positive second order polynomials, the solution

to the previous min-max problem is reached when R2(k̃
(1)
6 (c2), c2) = R2(k̃

(2)
6 (c2), c2),

which gives c2 = −π2

54 . Computing the value of k̃
(j)
6 (−π2/54) = −π6/192 finally gives

that the solution to problem (4.5) is reached at c2 = −π2

54 , k6 = kk̃6 = −k π6

192 , and
the proof is therefore complete.

Note that we excluded the case θ = π/2 in Theorem 4.1 since this would imply
division by zero in the asymptotic expansion. Actually, this case can be explicitly
computed: we find

x
(π
2

)
= 0, y

(π
2

)
=

kG

2π
arccos

(
3G2k2 − 5π2k̃2

3G2k2 + π2k̃2

)
,

and it is then easy to see that under the assumptions of Theorem 4.1, one has

d
(π
2

)
= k + kOG→∞(G−6), (4.8)

and that the sixth order term of d(π/2) is also minimal for (c2, k6) as given above. The
distance between the discrete and continuous dispersion relation can now be computed
as G → +∞. First note that Dc ∩ L(θ) = {ke(θ)}. Using now the symmetries of the
discrete and continuous dispersion relations and Theorem 4.1 together with (4.8), we
have that

dist(Dc, D̃h) = max
θ∈[0,π/2]

|d(θ)− k| = kOG→∞(G−6).

We define now a new 9-point FD method Hasympt
h given by (3.1) with k replaced

by k̃. The discrete wavenumber associated to the FD operator Hasympt
h is defined as

in (2.4). Its asymptotic behavior as G → +∞ can be computed using Theorems 2.3
and 4.1 from which we infer the next result.

Theorem 4.2. Assume that (a, b, casympt) are as in Theorem 3.1 and that k̃asympt

and casympt are as given by Theorem 4.1, k̃asympt = k− π4k
30 G−4−k π6

192G
−6, casympt =

8
45 − π2

54G
−2. Then the discrete wavenumber k̃asympt

d associated to the FD stencil

Hasympt satisfies k̃asympt
d = k + kOG→∞(G−6), where the OG→∞(.) only depends on

θ.
We emphasize that the combination of the results from Theorem 2.3 and Theorem

4.2 ensures that the FD schemeHasympt
h defined in 4.2 is sixth-order accurate on plane-

wave solution. Also, we now have a numerical method whose discrete wavenumber is,
due to the real shift k̃, a sixth order approximation of k while being only fourth order
without it.

5. Numerical experiments. So far, we have been interested in asymptotic
dispersion correction, that is as G goes to infinity. In this section we would like to see
if our FD scheme Hasympt can also reduce numerical dispersion for smaller values of
G. In order to reach this goal, we are going to compute first the values of G for which
the dispersion relation is non-empty, and also for which it becomes disconnected,
since then the dispersion correction can no longer be efficient. We will next optimize
numerically the parameters k̃ and c by minimizing the distance and then compare our
formulas with the numerically optimized parameters. Next, we compute and compare
the distance between the discrete and continuous dispersion relation for several FD
methods from the literature which use dispersion correction or not. We then solve
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a Helmholtz equation on the square (−1, 1) × (−1, 1) with inhomogeneous Dirichlet
boundary conditions whose exact solution is a plane wave to show the interest of using
FD schemes with dispersion correction. We end this section by showing numerically
that using dispersion correction in a multigrid algorithm yields a convergent algorithm.

5.1. Geometric properties of the discrete dispersion relation. We em-
phasize that dispersion correction is done by minimizing the distance between the
discrete and continuous dispersion relations. Also, as pointed out in the introduction,
FD schemes with dispersion correction can enhance the performance of the multigrid
algorithm. It is therefore of interest to know for which values of k and h the discrete
dispersion relation Dh is non-empty. We are also going to look for which values of k
and h the discrete dispersion relation becomes disconnected, which is the threshold
below which the dispersion correction can no longer be efficient.

Theorem 5.1. Assume that 2b + c − 1 ≥ 0, (1 − 2c)/(16a − 8) > 0 and that

4a(2b+c−1)−4b+1 ≥ 0. Then the discrete dispersion relation D̃h of H̃h is disconnected
if and only if

G̃ :=
2π

k̃h
< G̃∗ = π

√
2b+ c− 1.

In addition, the discrete dispersion relation is non-empty if and only if

G̃ :=
2π

k̃h
≥ G̃min := 2π

√
1− 2c

16a− 8
.

Proof. To prove the theorem, we are going to study the parametric representation
of the representative curve of D̃h. From its definition, we have that any (ξ1, ξ2) belong

to D̃h if and only if it satisfies the equation

cos(hξ2) = f(cos(hξ1), G̃), (5.1)

where

f(X, G̃) =
((2a− 1)G̃2 + cπ2)X − 2aG̃2 + 2bπ2

((2a− 2)G̃2 + 2bπ2 + 2cπ2 − 2π2)X + (−2a+ 1)G̃2 − cπ2
.

Equation (5.1) defines a smooth curve ξ1 7→ ξ2(ξ1) with (ξ1, ξ2(ξ1)) ∈ D̃h as soon

as f(cos(hξ1), G̃) ∈ [−1, 1]. We show below that there exists G̃∗ such that ∀G̃ <

G̃∗, f
(
[−1, 1], G̃

)
% [−1, 1]. This will prove that, for all G̃ < G̃∗, there exists at

least one ξ1 = arccos(X) for which we can not find a corresponding ξ2 satisfying

(ξ1, ξ2) ∈ D̃h. In other words, the intersection of D̃h with the vertical line at such ξ1
is not empty for all G̃ ≥ G̃∗ but becomes empty for all G̃ < G̃∗ which means that the
discrete dispersion relation becomes disconnected.

Note that there are some a1, b1, a2, b2 ∈ R such that f(X, G̃) = a1X+b1
a2X+b2

, and

thus f ′(X, G̃) = (a1b2 − a2b1)/(a2X + b2)
2 has constant sign hence X ∈ [−1, 1] 7→

f(X, G̃) ∈ R is monotonic. As a result, we have the estimate

∀X ∈ [−1, 1], min
{
f(1, G̃), f(−1, G̃)

}
≤ f(X, G̃) ≤ max

{
f(1, G̃), f(−1, G̃)

}
,
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with

f(1, G̃) =
2bh2k̃2 + ch2k̃2 − 4

2bh2k̃2 + ch2k̃2 − 2h2k̃2 − 4
=

G̃2 − π2(2b+ c)

G̃2 + (−2b− c+ 2)π2
,

f(−1, G̃) =
−2bh2k̃2 + ch2k̃2 + 16a− 4

2bh2k̃2 + 3ch2k̃2 − 2h2k̃2 + 16a− 12
=

(4a− 1)G̃2 + (−2b+ c)π2

(4a− 3)G̃2 + (2b+ 3c− 2)π2
.

Some computations give that G̃ 7→ f(−1, G̃) is monotonic and that G̃ 7→ f(1, G̃) is

increasing with limG̃→+∞ f(1, G̃) = 1. In addition, one can see that the derivative of

G̃ 7→ f(−1, G̃) is positive if and only if 4a(2b+ c− 1)− 4b+1 ≥ 0. We now only need

to compute the G̃ > 0 for which f(1, G̃1,−) = −1 and f(−1, G̃−1,±) = ±1. This gives

G̃1,− = G̃−1,+ = π
√
2b+ c− 1, G̃−1,− = 2π

√
1− 2c

16a− 8
.

Since G̃ 7→ f(−1, G̃) is increasing, we have that G̃−1,+ = G̃1,− ≥ G̃−1,− and then,
due to the monotonic behavior of the upper and lower bound of X 7→ f(X), we have
that

∀G̃ ≤ G̃1,−, f(1, G̃) ≤ f(1, G̃1,−) = −1,

f(−1, G̃) ≤ f(−1, G̃−1,+) = 1 or f(−1, G̃) ≥ f(−1, G̃−1,+) = 1.

This observation gives that for all G̃ ≥ G̃1,−, the vertical line at ξ1 = 0 (that is
for X = 1) intersects the discrete dispersion relation characterized by (5.1) while

for all G̃ < G̃1,− := G̃∗, this intersection is empty which means that D̃h becomes

disconnected. Actually, we also show that for all G̃ < G̃−1,−, we have either that

f(X, G̃) < −1 or f(X, G̃) > 1 and thus, because of (5.1), the discrete dispersion
relation is empty.

Remark 5.2. We emphasize that the assumption on the coefficients (a, b, c)
of Theorem 5.1 are satisfied for the 5-point stencil (a, b, c) = (1, 1, 0) and the 4-th
order FD scheme from Theorem 3.1 with (a, b, c) = (5/6, 5/6 − c/2, c) for c ≥ 1/18.
We also compute below the values of G∗ and Gmin (without tildes since we do not
use a shifted wavenumber) for these two schemes. Since the 5-point stencil can be
obtained from (3.1) with a = 1, b = 1 and c = 0, D5−pts

h is non-empty for any
G ≥ Gmin

5−pts = π√
2
= 2.221441469. Theorem 5.1 applied to the 5-point stencil gives

that the discrete dispersion relation is disconnected for any

G < G∗
5−pts = π. (5.2)

We also consider the 9-point stencil with the parameters

c = 8/45, a = 5/6, b = 2(5/12− c/4), (5.3)

which is fourth order accurate according to Theorem 3.1. We get that the discrete dis-

persion relation is non-empty for any G ≥ Gmin
9−pts = 2π

√
29
240 = 2.184103659138, and

becomes disconnected for any G < G∗
9−pts =

√
6π
3 = 2.565099660324. We emphasize

that both values are smaller than the thresholds obtained for the 5-point stencil.
Theorem 5.1 is valid with or without a real shift k̃ on the wavenumber. It is

worth noting that G = 2π/(kh) is the genuine number of grid points per wavelength
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Fig. 5.1. Discrete dispersion relation for G = 1.52, 1.6, 1.65, 1.75, 1.85, 1.95 from top left
to bottom right. Blue: Discrete dispersion relation of the optimized FD scheme Hasympt, Red:
Continuous dispersion relation.

while G̃ = 2π/(k̃h) is the relevant parameter involved in the dispersion relation of
the asymptotically optimized finite difference scheme Hasympt

h . They are related by

the formula G = k̃
k G̃. For the FD scheme Hasympt

h , we have k̃ < k (see Theorem 4.1)

and thus G < G̃. Since we have lower bounds on G̃ for the discrete dispersion relation
to be non-empty and connected, we get that using a real shift allows us to consider
values of G that are actually smaller than G∗ and Gmin. As a result, the range of
G for which the dispersion relation is either non-empty or connected is larger when
using the real shift than without.

We now illustrate this fact using the parameters (5.3) that give G̃min
9−pts ≥ 2.18.

Using the definition of k̃, this requirement translates to

2π

√
1− 2casympt

16a− 8
≤ G̃ =

2π

k̃asympt
=

G

(1− 1π4G−4 − π6G−6/192)
,

which is actually satisfied for any G such that (1 − 1π4G−4 − π6G−6/192) > 0 that
is G ≥ 1.52450064. We represent the dispersion relation of Hasympt

h in Figure 5.1for
1.52 ≤ G ≤ 1.95. This shows that, for the asymptotically optimized scheme, discrete
waves can still propagate for less than two points per wavelength even though the
dispersion correction is no longer working properly.

5.2. Numerical optimization of the parameters. In this section, we numer-
ically compute for a given G the values of (k̃, c) that minimize the distance between
the discrete and continuous dispersion relation. We use the (a, b, c) from (5.3) and
k ∈ {20, 40, 80, 100, 160, 180, 200, 250, 300}, G ∈ {40, 30, 20, 15, 10, 5, 4, 3, 2.5}. We
chose to work with this range of G because, in the next section, we compare the
dispersion error of the asymptotically optimized FD scheme with the sixth order FD
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Fig. 5.2. Left: Relative error between optimized k and k̃asympt from Theorem 4.1. Right:
Relative error between numerically optimized value of c and the asymptotically optimized casympt

from Theorem 4.2

scheme from [35, Eq. (2.15)] which involves constants that are no longer defined
when G < 2.5. We minimize the distance between the discrete and continuous disper-
sion relation for the above (k,G) using the Nelder-Mead method with the MATLAB
function fminsearch. Figure 5.2 gives the relative error between the asymptotically

optimized shift, namely k̃asympt = k−k π4

30G4 −k π6

192G6 , and the numerically optimized
one kopt.

We see from these results that our shifted wavenumbers computed to get the best
asymptotic (as G → +∞) dispersion error are actually good approximations to the
numerically optimized one for G ≥ 5. Figure 5.2 shows the relative error between
the asymptotically optimized c, that is casympt = 8

45 − 8
45G

−2, and the numerically
optimized one. We also get that the numerically optimized value of c does not depend
on the wavenumber. For large G, casympt is a good approximation of the optimal c for
G ≥ 10. To conclude, the asymptotically optimized FD scheme has similar accuracy
as the optimized one for any G ≥ 3.

5.3. Distance between the discrete and continuous dispersion relations.
We compute here the relative distance between the discrete and continuous dispersion
curves for various FD method. That is

distr =
dist(Dc,Dh)

k
,

where Dh is going to be the dispersion relation of some FD schemes. It is worth
noting that 100 × distr represents the percentage of error of the distance between
the discrete and continuous dispersion curves. We introduce the following notations
in order to consider various FD schemes: Hasympt is given by (3.1) with asymptotic
parameters from Theorem 4.2, Hopt is given by (3.1) with numerically optimized pa-
rameters from Section 5.2, HWu is the sixth order scheme from [35, Eq. (2.15)], HJSS

is defined in [23], Hfd5 is the standard 5-point stencil, HLambe is the FD stencil from
[24], HSutmann is the sixth-order stencil from [32]. It is the same stencil as in [35] but
without dispersion correction. The numerical results are represented in Figure 5.3.
The relative distance of the FD schemes with reduced numerical dispersion behave
like Cste×G−r where r is their own order of accuracy. Note that this is expected for
large G because of Theorem 2.3 and that this formula also holds for smaller values of
G.
The results indicate that only Hfd5, that is the standard 5-point stencil, has a very
bad numerical dispersion. This actually comes from the fact that its dispersion curve
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Fig. 5.3. Relative distance between the discrete and continuous dispersion relation for several
FD schemes

becomes disconnected below G = π, see (5.2). The dispersion error of HLambe and
HJSS is smaller than the 5-point stencil because these FD schemes feature a dispersion
correction.
The scheme with the least numerical dispersion is Hopt which also has similar disper-
sion error as the sixth order scheme with dispersion correction HWu from [35]. The
asymptotically optimized schemeHasympt also has similar dispersion error asHWu and
Hopt for G ≥ 10. The stencil HSutmann has the worst dispersion error for any consid-
ered G which is because this is the only scheme without dispersion correction. As a
result, our asymptotically optimized FD scheme, which is formerly only fourth order
accurate and performs dispersion correction with explicit formulas for the parameters,
have numerical dispersion comparable to those of some genuinely sixth order schemes.
These two observations show that using a real shift on the wavenumber yields some
substantial improvement.

5.4. Limits of equi-oscillation for dispersion correction. We now show
that finding the best dispersion correction by equioscillation is limited for values of G
bigger than some limiting value G̃equi. For smaller G, the best dispersion correction
is not characterized by equioscillation any more. We do this for simplicity with the
5-point finite difference stencil using only the shifted wave number k̃ as parameter.
We show in Figure 5.4 for different values of G the original dispersion curve of the 5-
point scheme in black, the exact circular dispersion curve in red, and in blue the best
dispersion correction possible using only the modified wave number k̃. We see that
for G = 3.5 and G = π (see (5.2) for the latter), the original black dispersion curve
is still a connected set, but much worse an approximation of the circular red exact
dispersion curve than the dispersion corrected blue one. We also see that the blue
dispersion corrected curve equioscillates around the red continuous circular dispersion
curve, with the maxima of the difference attained at zero, 45 and 90 degree angles.
For G = 3, 2.5, 2.343, the original dispersion curve is disconnected and lost its physical
meaning (see also Remark 5.2), while the dispersion corrected curve still equioscillates
and best approximates the continuous circular one, albeit for G = 2.343 now by a
square. For smaller G = 2, 1.5, 1, 0.5, this is not possible any more and the blue
dispersion corrected dispersion curve is just staying as close as possible to the red
continous circular dispersion curve, remaining a square and shrinking. To compute
this best possible dispersion curve, we recall that the dispersion curve for the 5-point
FD scheme is given by

coshx+ coshy −
(
2− k̃2h2

2

)
= 0. (5.4)
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Fig. 5.4. Best dispersion correction (blue) for the 5-point finite difference scheme for G =
3.5, π, 3, 2.5, 2.343, 2, 1.5, 1, 0.5, compared to the uncorrected dispersion relation (black) and the exact
continuous dispersion relation (red).

The signed distance from the circle at zero and 45 degree angle is therefore given by

d0 :=
π − arccos( 12 k̃

2h2 − 1)

h
− k, d45 :=

√
2
π − arccos( 14 k̃

2h2 − 1)

h
− k.

Setting h := 2π
Gk and solving d0+d45 = 0, we find the dispersion correction parameter

k̃ which mininizes the distance by equioscillation. Now we see in Figure 5.4 that as G
becomes smaller, the dispersion corrected dispersion relation becomes more and more
square, and the value when the dispersion corrected dispersion relation is exactly a
square on its tip is when the dispersion corrected dispersion relation becomes a linear
function. Solving the dispersion relation (5.4) for y, we find

y =
π − arccos(cos(hx)− 2 + 1

2 k̃
2h2)

h
,

which becomes a linear function of x if

1

2
k̃2h2 = 2 ⇐⇒ k

k̃
G = π ⇐⇒ k̃ =

kG

π
.

19



Replacing this value into the expressions for the distances, we obtain

d0 + d45 =
1

4
(
√
2G− 8 + 2G)k = 0,

and it is therefore only possible to do dispersion correction by equioscillation up to

G̃equi :=
8

2 +
√
2
= 2.343145750.

For smaller G, the closest we can get to the exact dispersion relation is when making
it a square, k̃ = kG

π , which is plotted in Figure 5.4 for values G < G̃equi.

5.5. Accuracy on plane wave solutions. In this part, we investigate the ac-
curacy of the FD schemes Hasympt, Hopt, HWu and HSutmann when solving a boundary
value problem whose exact solution is a plane wave,{

∆u(θ,x) + k2u(θ,x) = 0, in Ω := (−1,+1)× (−1,+1),
u(θ,x) = exp(ikx · d(θ)), on ∂Ω,

(5.5)

where d(θ) = (cos(θ), sin(θ)) is a unit vector. We emphasize that u(θ,x) = exp(ik ·
xd(θ)) is the unique solution to problem (5.5) only if k2 is not an eigenvalue of the
unbounded operator defined as the Laplace operator with domain H1

0 (Ω). In addition,
since the distance between the continuous and discrete dispersion relations of Hasympt

and Hopt both behave like O(G−6) (see Theorem 4.1 and Figure 5.3), Theorem 2.3
ensures that these two schemes are going to give 6-th order approximations of u(θ,x)
for any angle θ.

For a given meshsize h, we consider a uniform grid of points xi,j = (xi, yj) ∈ Ω
which thus verify |xi − xi±1| = h and |yj − yj±1| = h for any i, j. We are going to
solve the discrete problems associated to (5.5) for the four FD schemes and the angles
θ ∈

{
2π
N l, l = 0, · · · , N

}
. Denoting by uh(θ) := (uh,i,j(θ))i,j the discrete solution, we

compute the averaged relative error

err(h) =
1

N + 1

N∑
l=0

∥u(θl,xi,j)− uh(θl)∥2
∥uh(θl)∥2

, xi,j = (xi, yj), (5.6)

where ∥v∥2 =
√∑

i,j |vi,j |2, is the usual Euclidean norm.

We first give convergence results for fixed wavenumbers and decreasing meshsize
to get the accuracy as h → 0 of each FD stencil. Next, we investigate the pollution
effect [4, 22, 3, 36] which can be defined as the fact that, as the wavenumber increases,
it is not enough to have a constant number of grid points per wavelength to keep the
relative error bounded. We are then going to compute the averaged relative error
(5.6) for G fixed and k increasing.

We choose N = 20 and for the meshsize h ∈ {0.005, 0.008, 0.01, 0.02, 0.03} and
the wavenumbers k ∈ {10, 20, 40, 80}. The numerical results are shown in Figure 5.5.
As indicated by Figure 5.3 which shows the relative distance between the discrete
and continuous dispersion relations, the stencils HWu and Hopt have very similar
accuracy. Also, as expected, Hasympt has similar accuracy as these two if the number
of grid points per wavelength is large enough (see Figure 5.5 for k = 10, 20). Note
that, as k increases, G becomes smaller and we are thus no longer in the regime
G → +∞ in which the asymptotically optimized scheme has been designed to be
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Fig. 5.5. Relative errors for k = 10 (top left), k = 20 (top right), k = 40 (bottom left) and
k = 80 (bottom right).
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Fig. 5.6. Relative error for G fixed and k increasing.

efficient. Nevertheless, Hasympt is still a 6-th order scheme for any k and G considered.
It is worth noting that HSutmann is less accurate than the three other FD schemes
because this is the only stencil that does not feature a dispersion correction. Note
that the pollution effect has not been overcome since the relative error increases with
the wavenumber. Nevertheless, comparing with the accuracy of HSutmann, this effect
is indeed reduced by our dispersion correction.

To study the pollution effect further, we choose N = 8 and work now with G
fixed given successively by G ∈ {2.5, 4, 6, 8, 10, 12}, and for every G, we use the
wavenumbers k ∈ {3, 4, . . . , 40}. The relative errors we measured are shown in Figure
5.6. First note that for some values of G, k, there are some bumps shared by the four
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Fig. 5.7. Relative error for G fixed and k increasing.

schemes considered. To explain these, we also computed numerically the condition
number of each matrix, and we show as example the scaled condition number of our
optimized scheme also in Figure 5.6. We see that the condition number has bumps in
the same location as the relative error shown in Figure 5.6. This indicates that the
reason for the bumps is the fact that we approximate problem (5.5) which is singular
for certain k, h and thus ill conditioned when close to a discrete eigenvalue, and we
thus focus on the other values, away from the bumps. We first note that for G = 2.5
and this wavenumber range, both the Wu scheme and our new optimized scheme lead
to usable solutions with error of about 10 percent, while the Sutmann scheme and the
asymptotic dispersion correction can not retain any accuracy. ForG = 4 and this wave
number range, the Wu scheme and our optimized dispersion correction give errors
below 1 percent, and the Sutmann scheme and our asymptotic formula are below 10
percent. This trend continues, but most importantly we see that the asymptotic closed
formula scheme becomes better as G is increasing, and for the typical engineering
practice of G = 10 or G = 12 points per wavelength, the asymptotic closed form
scheme now performs almost as well as the Wu scheme and our optimized dispersion
correction, which both rely on numerical optimization. To study the behavior for
much larger wave numbers, we consider now k ∈ {40, 80, 160, 320, 640, 1280}, and to
avoid the bumps due to ill conditioning, we simulate in an interval around each wave
number, e.g. for k = 40 we run all wavenumbers {35, 36, 37, . . . , 45}, and pick for
each scheme the case with the lowest error. The results are displayed in Figure 5.7.
We can now clearly see how the dispersion correction lowers the pollution effect: in
all results, our new optimized dispersion correction gives the lowest error, followed by
the Wu scheme, and the Sutmann scheme without dispersion correction has an error
which is between one and two orders of magnitudes larger. For only G = 2.5 points
per wavelength (!), our new optimized dispersion correction scheme can still give a
10 percent accuracy for k up to about 100, and with G = 4 we get an error of 5e− 2
for k = 1280. We also see that the asymptotic closed formula becomes more and
more effective as G increases, and for G = 12 we approach the numerically optimized
formula. In terms of computing time, we measured the average of 18 solutions on a
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modern workstation: for low accuracy and k = 80, the Sutmann scheme needs G = 4
for an error 0.8e − 1 which takes 0.032 sec., and our new optimized scheme with
G = 2.5 and similar error 1e− 1 takes 0.012 sec., a factor 3 faster. For intermediate
accuracy, and k = 160, the Sutmann scheme needs G = 10 for an error 8e− 4 which
takes 2.4 sec., and our new optimized scheme with G = 6 and similar error 4e−4 takes
0.58 sec., a factor 4 faster. For high accuracy, and k = 1280, the Sutmann scheme
needs G = 12 for an error 1.5e−3 which takes 371 sec., and our new optimized scheme
with G = 6 and similar error 3e−3 takes 78.4 sec., a factor 5 faster. We finally observe
that for a given number of points per wavelength G, the Sutmann scheme without
dispersion correction gives for k = 40 a similar or even lower accuracy than our new
optimized dispersion correction for k = 1280.

Remark 5.3. Due to [26, p. 1223, Theorem 4.10], any solution to a Helmholtz
problem can be written as u(x) = uA(x)+uH2(x), where uH2 ∈ H2(Ω) has H2-bounds
that do not depend on k, and uA is oscillatory. When doing dispersion correction, we
thus have a scheme that is more accurate only for approximating uA. As a result, even
if the asymptotically optimized and the optimized FD stencils are 6-th order accurate
for plane wave solutions (see Theorems 4.2, 2.3 and the numerical results in Figure
5.5), these two schemes are going to be 4-th order accurate (see Theorem 3.1) for
general right hand side.

5.6. Multigrid with dispersion correction. We investigate now the perfor-
mance of the multigrid algorithm [21, 29] for the 5-point stencil, the fourth-order
9-point stencil (5.3), and the asymptotically optimized and the optimized stencils. A
general multigrid algorithm with l levels can be written as

function zl = MGMl(zl,bl)
if l = 1 then z1 = A−1

1 b0 else
zl = Sν1(zl,bl); % pre− smoothing
dl−1 = Rl(bl −Alzl);
e0l−1 = 0;
for j = 1 to τ do

ejl−1 = MGMl−1(e
j−1
l−1 ,dl−1);

end
zl = zl + Ple

τ
l−1;

zl = Sν2(zl,bl); % post− smoothing
end,

(5.7)

where Al are the discrete operators defined on the grid at level l, Rl are restriction
operators acting from fine (level l + 1) to coarse grids (level l), Pl are prolongation
operators acting from coarse to fine grids, Sl are linear iterative methods known as
smoothers, and l = 1 is actually the coarsest level on which the matrix is finally
inverted. The parameters ν1 and ν2 correspond to the number of pre and post-
smoothing steps, and τ permits to consider either a V-cycle (τ = 1) or a W-cycle
(τ = 2). From [29, p.22, Theorem 7.1] (see also [21, Lemma 7.14]), the algorithm 5.7
is a linear iterative method whose iteration matrix is given by

CMG,1 = 0,

CMG,l = Sν2

l

(
I − Pl

(
I − Cτ

MG,l−1

)
A−1

l−1RlAl

)
Sν1

l .
(5.8)

We emphasize that CMG,l = CMG,l(ν2, ν1), and that

ρ (CMG,l(ν2, ν1)) = ρ (CMG,l(0, ν1 + ν2)) ,
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L = 2, k = 64 \ν 1 5 10 20
5-pts 6.6410× 106 6.1082× 106 5.5040× 106 4.4746× 106

9-pts 35.0880 18.5364 13.3576 12.1106
asympt 22.4954 6.9003 1.6712 0.6875
opt 60.0441 18.4501 4.6126 0.4802

L = 3, k = 32
5-pts 2.4703× 105 2.0306× 105 1.7001× 105 1.3084× 105

9-pts 13.6200 6.3527 5.6742 5.6195
asympt 25.8102 5.2241 0.8920 0.6922
opt 68.5569 14.1023 2.8002 0.3742

L = 4, k = 16
5-pts 7.6109× 103 5.9310× 103 4.8903× 103 3.8032× 103

9-pts 7.3096 3.0443 2.2077 2.0340
asympt 25.2834 4.5225 0.8597 0.6956
opt 67.1272 12.3786 2.4282 0.3870

Table 5.1
Spectral radius of the multigrid iteration matrix for V-cycles (τ = 1) and p = 6. We have

approximately π grid points per wavelength at the coarsest level and performed ν smoothing steps
on each level.

so it suffices to study only the one parameter case ν = ν1 + ν2.
We use standard restriction and prolongation operators (see e.g. [31, p. 12, Eq.

(23)]), defined for any grid function u at level l + 1 by

(Rlu)i,j := 1
16 (4u2i,2j + 2(u2i−1,2j + u2i+1,2j + u2i,2j−1 + u2i,2j+1)
+u2i−1,2j−1 + u2i+1,2j−1 + u2i−1,2j+1 + u2i+1,2j+1),

Pl := 4RT
l .

(5.9)

For the smoother, we use a damped Kacmarz-like smoother (see e.g. [5, p. 9, Section
4] and [9]) whose iteration matrix is given by Sl = I− ωlA

∗
lAl, with ωl = ρ(Al)

−2.
Remark 5.4. Since S∗

l = Sl, the smoother satisfies the two properties σ(Sl) ⊂
[0, 1] and ∥Sl∥2 = ρ(Sl) ≤ 1. Since the smoother is bounded, it will not lead to instabil-
ities like the ω-Jacobi smoother used in [31, p. 15, Section 4.2]. These instabilities can
yield divergence of the multigrid algorithm if too many smoothing steps are performed
as pointed out in [27].

We now study the performance of Algorithm 5.7 applied to the Helmholtz equa-
tion with homogeneous Dirichlet boundary conditions on Ω = (0, 1) × (0, 1). At any
level l, the grid is an nl × nl uniform grid of Ω with

nl = 2l − 1, hl =
1

nl + 1
,

so the grids are nested. We use the same number ν of smoothing steps on each level.
For a number of levels L, we will then have done ν(L − 1) smoothing steps at the
end of the cycle. In all our numerical computations, we fix the number of levels L,
and next chose k such that we have approximately π grid points per wavelength at
the coarsest level. This ensures that the dispersion relation of the 5-point stencil is
connected as shown in Remark 5.2. On the finest level, we use an np × np uniform
grid with p = 6 hence we have np×np = 632 = 3969 grid points on the finest grid. We
show in Table 5.1 the spectral radius of the iteration matrices for V-cyles (τ = 1) with
L = 2, 3, 4, and in Table 5.2 the corresponding results for W-cycles (τ = 2). For each
stencil, one can see that the spectral radius is decreasing as ν increases. As a result
the multigrid method is convergent if one uses a large enough number of smoothing
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L = 3, k = 32 \ν 1 5 10 20
5-pts 5.0795× 1010 3.8270× 1010 2.8781× 1010 1.7963× 1010

9-pts 176.9828 43.2154 33.1786 32.2884
asympt 573.3670 36.0669 1.8799 0.4950
opt 4.0956× 103 259.5673 13.6469 0.2512

L = 4, k = 16
5-pts 2.1604× 1015 1.1155× 1015 0.6010× 1015 0.2335× 1015

9-pts 2.4772× 103 0.1379× 103 0.0335× 103 0.0210× 103

asympt 3.1880× 105 1.105× 103 3.0124 0.2558
opt 1.6271× 107 5.7142× 104 155.0806 0.1377

Table 5.2
Spectral radius of the multigrid iteration matrix for W-cycles (τ = 2) and p = 6. We have

approximately π grid points per wavelength at the coarsest level and performed ν smoothing steps
on each level.

steps. This property of the multigrid algorithm is known to hold for elliptic coercive
problems (see e.g. [21]) and seems to hold here for the Helmholtz equation due to the
boundedness of the smoother (see Remark 5.4). However, for the 5-point and 9-point
stencils, the minimal number of smoothing steps required for the iteration matrix to
be a strict contraction is too large for this algorithm to be used in practice. As shown
in [13], this behavior is also observed when dealing with the Helmholtz equation with
a complex wavenumber whose imaginary part is not large enough. More importantly,
note how the dispersion correction tremendously reduces the value of the minimal ν.

Note however also that, whatever the number of levels we use, the minimal value
of ν for which multigrid converges is also increasing with the wavenumber k. To
illustrate this, we show in Figure 5.8 the value of νmin defined as

νmin := min {ν ∈ N∗| ρ (CMG,l(0, ν)) < 1} ,

as well as the spectral radius of the iteration matrix if νmin smoothing steps are
done at each level. The performance of the asymptotically optimized scheme and the
optimized scheme are very similar for small wavenumbers. This behavior is expected
from the results of Section 5.2 since such cases correspond to large G. Note however
that the reduction factor of the (numerically) optimized scheme is roughly two-times
smaller than the one of the asymptotically optimized scheme for ν = 20 (see Tables
5.1 and 5.2).

From the results of Tables 5.1 and 5.2, one can see that the performance of the
W -cycle is bad for a small number of smoothing steps. Nevertheless, when we use 20
smoothing steps at each level, the spectral radius is smaller for the W -cycle than for
the V -cycle and, for both V and W-cycles, the value of νmin is then quite similar (see
Figure 5.8). Note finally that the asymptotically optimized scheme whose definition
does not rely on numerical optimization can then yield a convergent multigrid algo-
rithm even for a number of grid points per wavelength at the coarsest level that is
out of the asymptotic range for which our formula has been derived.

We end this section by solving a Helmoltz problem on (0, 1)× (0, 1) with homo-
geneous Dirichlet boundary conditions and a non-zero source term given by

f(x, y) = sin
(x
2

)
sin (ky) k.

We solve this problem for several values of k using the MGM algorithm with the same
number of smoothing steps at each level. We emphasize that the multigrid algorithm
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Fig. 5.8. Value of νmin (left) and spectral radius (right) of the iteration matrix for L = 3,
p = 6, V-cycle (top) and W-cycle (bottom).

(5.7) is a fixed point iteration zj+1
l = MGM(zjl , bl). In all our numerical experiments,

we start with a random initial guess and used the stopping criterion√√√√np×np∑
m=1

1

np × np

(
zmj+1 − zmj

)2
=

1

np
∥zj+1 − zj∥2 ≤ 10−6,

where np×np is the number of grid points at the finest level. We define the reduction
factor after some iterations as

Reduction factor := max
j

∥zj+1 − zj∥2 /np

∥zj − zj−1∥2 /np
= max

j

∥zj+1 − zj∥2
∥zj − zj−1∥2

.

We only consider the asymptotically optimized and the numerically optimized FD
schemes, since the standard 5 and 9-pt stencils have convergence issues as we have
already seen in Tables 5.1 and 5.2. We also chose to work with a small number of
grid points at the coarsest level (Gcoarse < 6) since, in this range, the asymptotically
optimized scheme is far from the optimized one as indicated by Figure 5.2. The
numerical results are given in Tables 5.3 for the V-cycle and 5.4 for the W-cycle.

For the V-cycle (see Table 5.3), one can see that the numerically optimized scheme
performs much better than the asymptotically optimized scheme. In addition, while
the performance of the asympt scheme collapses as k increases, those of the numeri-
cally optimized scheme remain similar. Regarding the W-cycle (see Table 5.4), both
schemes almost have the same performances with reduction factors being the same
up to 10−5.

To conclude, the results presented in this section confirm that correcting the dis-
persion is one of the main features needed to design a convergent multigrid algorithm
for Helmholtz problems.

6. Conclusions and outlook. We explored the idea of using a real shift for
the wavenumber to do dispersion correction. Contrary to most of the previous results
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WavenumberMGM settingsG finest gridFD schemeReduction factorNumber of iterations
k = 90 p = 8, L = 3 17.8722 asympt 0.4944 15

opt 0.1475 7
p = 9, L = 4 35.7443 asympt 0.4982 15

opt 0.1538 7

k = 180 p = 8, L = 2 8.9361 asympt 0.7764 28
opt 0.1142 7

p = 9, L = 3 17.8722 asympt 0.7273 23
opt 0.1437 7

k = 360 p = 9, L = 2 8.9361 asympt - divergence
opt 0.2620 8

Table 5.3
Results obtained when solving a Helmholtz problem on (0, 1)×(0, 1) with homogeneous Dirichlet

boundary conditions and source term f(x, y) = k sin(ky)sin(x/2) using a multigrid V-cycle with
ν = 30 smoothing steps at each level. In all these experiments, we have roughly 4.5 points per
wavelength at the coarsest level.

WavenumberMGM settingsG finest gridFD schemeReduction factorNumber of iterations
k = 90 p = 8, L = 3 17.8722 asympt 9.006× 10−3 4

opt 9.012× 10−3 4
p = 9, L = 4 35.7443 asympt 7.207× 10−3 4

opt 7.211× 10−3 4

k = 180 p = 9, L = 3 17.8722 asympt 9.020× 10−3 4
opt 9.043× 10−3 4

Table 5.4
Results obtained when solving a Helmholtz problem on (0, 1)×(0, 1) with homogeneous Dirichlet

boundary conditions and source term f(x, y) = k sin(ky)sin(x/2) using a multigrid W-cycle with
ν = 30 smoothing steps at each level. In all these experiments, we have roughly 4.5 points per
wavelength at the coarsest level.

from the literature, our optimized coefficients are explicitly determined and do not rely
on a numerical optimization procedure. Our optimized FD scheme has a dispersion
relation that is not empty for a number of grid points per wavelength below 2, but
even with optimized dispersion correction the dispersion error becomes large then.
The real shift on the wavenumber allows us also to have a fourth-order FD scheme
which is sixth-order accurate on plane wave solutions, which means having numerical
dispersion comparable to those of some formerly sixth order schemes. We also showed
that our asymptotically optimized scheme can be used in a multigrid algorithm and
that the resulting linear iterative method is convergent if the number of smoothing
steps is large enough. The minimal number of smoothing steps for which the iteration
matrix is a strict contraction is greatly reduced with the dispersion correction. This
striking result together with those from [9, 10, 16] show that the idea of using a
real shift to reduce numerical dispersion is really promising. Finally, we would like
to emphasize that all the results of this paper can be easily extended to the three-
dimensional case without any additional difficulties.

Some interesting further work can be envisaged: first, the idea of the real shift
could be applied to the sixth order scheme from [35]. According to the authors, the
discrete wavenumber is not easily computable. Therefore, the asymptotic dispersion
correction introduced in this paper can be appealing since only approximations as
G → +∞ of the dispersion relation are needed (see e.g. Theorem 4.1) to compute the
asymptotically optimal shifted wavenumber.

A further topic is the use of FD methods with reduced numerical dispersion in
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multigrid algorithms. We already studied numerically the behavior here, but a theo-
retical analysis would be of great interest, and is technically not easy. In addition, it is
known that the Helmholtz operator with a wavenumber having a non-zero imaginary
part ε is a good preconditioner for the original Helmholtz problem if ε = O(k) [17, 12].
On the other hand, the multigrid algorithm has its best performance when the shift
is large enough, that is ε = O(k2) [13, 11]. As a result, one should investigate the
behavior of the multigrid method using a FD scheme with dispersion correction to see
if this algorithm can have good performance for a shift smaller than the wavenumber
squared.

Another further direction is the extension of the methods we introduced to Finite-
Element methods. It could be indeed interesting to apply our techniques to some
coercive variational formulations for the Helmholtz equation that have been intro-
duced and studied in [14, 18, 25]. Finally, for some long-term perspectives, it could
be very interesting to lift some key assumptions used throughout this paper like, for
instance, considering non-uniform meshes and a spatially-varying, piecewise constant
wavenumber.

7. Appendix. Certain technical calculations can be checked with symbolic com-
putations. In this appendix, we give the corresponding commands which can directly
be executed in Maple. In the Proof of Theorem 3.1, the Taylor expansion (3.2) can
be obtained with
> S1:=f(x-h,y)+f(x+h,y)+f(x,y-h)+f(x,y+h);

> S2:=f(x-h,y-h)+f(x+h,y-h)+f(x-h,y+h)+f(x+h,y+h);

> S:=(4*a/h^2-k^2*b)*f(x,y)+((1-2*a)/h^2-(1/4)*k^2*c)*S1

-((1-a)^2+(1/4)*k^2*(1-b-c))*S2;

> simplify(series(S,h));

The result allows one to get Equation (3.3) which gives the conditions on a, b, c for the FD
scheme to be fourth order. Equation (3.4) can be obtained with

> f:=(x,y)->exp(I*k*(x*cos(theta)+y*sin(theta)));

> simplify(series(S,h,8));

The proof of Theorem 4.1 is based on the asymptotic expansion of (x(θ), y(θ)) solution

to F (k̃h, c, x(θ), y(θ), G) = 0. The full asymptotic expansion of the function F as G → +∞
can be obtained with

> F:=(4*a/h^2-ktilde^2*b)+(2*((1-2*a)/h^2-(1/4)*ktilde^2*c))*(cos(h*x)+cos(h*y))

-(2*((1-a)/ h^2+(1/4)*ktilde^2*(1-b-c)))*(cos(h*(x+y))+cos(h*(y-x)));

> a:=5/6; b:=5/6-(1/2)*c;

> h:=2*Pi/(k*G);

> y:=x*tan(theta);

> ktilde:=k0+k1/G+k2/G^2+k3/G^3+k4/G^4+k5/G^5+k6/G^6;

> c:=c0+c1/G+c2/G^2; x:=x0+x1/G+x2/G^2+x3/G^3+x4/G^4+x5/G^5+x6/G^6;

> collect(simplify(convert(asympt(F,G,8), polynom)),G);

The last result allows one to determine that

> k0:=k; x0:=k*cos(theta); x1:=0; k1:=0; x2:=0; x3:=0;

> k2:=0; k3:=0; c0:=8/45; x4:=0; k4:=-(1/30)*Pi^4*k;

> k5:=0; x5:=0; c1:=0;

To get x6, one computes the sixth order term in the asymptotic expansion of F and sets
it to zero,

> x6:=solve(limit(asympt(F,G,12)*G^6,G=infinity)=0,x6);

The distance between the discrete and continuous dispersions relations and its sixth
order term involved in Equation (4.5) are then obtained as

> d:=simplify(sqrt(1+tan(theta)^2)*x*csgn(1/(cos(theta))));

> d6:=collect((limit((d-k)*G^6,G=infinity))/k,k);
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The function H(Y, k6, c2) = d6(arccos(Y ), k6, c2), its derivative, its critical points and
the value of H at these points that are needed to get Equation (4.6) can be obtained with

> theta:=arccos(Y); H:=d6; CritPoints:=solve(diff(H,Y)=0,Y);

> for L to 7 do

Y:=CritPoints[L]; collect(simplify(H),k); Y:=’Y’;

end do;

In the proof of Theorem 5.1, one can get the expression of the function f involved in
Equation (5.1) based on F defined above by

> F:=expand(F); B:=solve(%,cos(h*y));

> h:=2*Pi/(ktilde*G); cos(2*Pi*x/(ktilde*G)):=X;

> f:=collect(simplify(B),[X,G]);

The value of f(−1, G̃), f(+1, G̃) and the solution to f(1, G̃1,−) = −1, f(−1, G̃−1,±) = ±1
can be obtained by

> X:=1; fp1:=collect(B,[G,Pi]); X:=’X’; X:=-1;

> fm1:=collect(B,[G,Pi]); X:=’X’:

> Gp1:=solve(fp1=-1,G); Gm1:=solve(fm1=1,G);

> Gmm1:=solve(fm1=-1,G);
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